首页> 美国卫生研究院文献>Journal of Bacteriology >Transcriptome Analysis of the Rhodobacter sphaeroides PpsR Regulon: PpsR as a Master Regulator of Photosystem Development
【2h】

Transcriptome Analysis of the Rhodobacter sphaeroides PpsR Regulon: PpsR as a Master Regulator of Photosystem Development

机译:球形球形红细菌PpsR调节子的转录组分析:PpsR作为光系统发育的主要调节剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

PpsR from the anoxygenic phototrophic bacterium Rhodobacter sphaeroides has been known as an oxygen- and light-dependent repressor of bacteriochlorophyll and carotenoid biosynthesis genes and puc operons involved in photosystem development. However, the putative PpsR-binding sites, TGTN12ACA, are also located upstream of numerous nonphotosystem genes, thus raising the possibility that the role of PpsR is broader. To characterize the PpsR regulon, transcriptome profiling was performed on the wild-type strain grown at high and low oxygen tensions, on the strain overproducing PpsR, and on the ppsR mutant. Transcriptome analysis showed that PpsR primarily regulates photosystem genes; the consensus PpsR binding sequence is TGTcN10gACA (lowercase letters indicate lesser conservation); the presence of two binding sites is required for repression in vivo. These findings explain why numerous single TGTN12ACA sequences are nonfunctional. In addition to photosystem genes, the hemC and hemE genes involved in the early steps of tetrapyrrole biosynthesis were identified as new direct targets of PpsR repression. Unexpectedly, PpsR was found to indirectly repress the puf and puhA operons encoding photosystem core proteins. The upstream regions of these operons contain no PpsR binding sites. Involvement in regulation of these operons suggests that PpsR functions as a master regulator of photosystem development. Upregulation of the puf and puhA operons that resulted from ppsR inactivation was sufficient to restore the ability to grow phototrophically to the prrA mutant. PrrA, the global redox-dependent activator, was previously considered indispensable for phototrophic growth. It is revealed that the PrrBA and AppA-PpsR systems, believed to work independently, in fact interact and coordinately regulate photosystem development.
机译:来自无氧光养细菌球形红球菌的PpsR被认为是光合作用的细菌叶绿素和类胡萝卜素生物合成基因以及puc操纵子的氧和光依赖性阻遏物。但是,假定的PpsR结合位点TGTN12ACA也位于许多非光系统基因的上游,因此增加了PpsR的作用更广泛的可能性。为了表征PpsR调节子,对在高和低氧张力下生长的野生型菌株,过量生产PpsR的菌株以及ppsR突变体进行了转录组谱分析。转录组分析表明,PpsR主要调节光系统基因。共有的PpsR结合序列是TGTcN10gACA(小写字母表示保守度较低);体内抑制需要两个结合位点的存在。这些发现解释了为什么许多单个TGTN12ACA序列不起作用。除了光系统基因外,参与四吡咯生物合成早期阶段的hemC和hemE基因被确定为PpsR抑制的新直接靶标。出乎意料的是,发现PpsR间接抑制编码光系统核心蛋白的puf和puhA操纵子。这些操纵子的上游区域不包含PpsR结合位点。参与对这些操纵子的调控表明PpsR作为光系统发展的主要调控者。 ppsR失活导致的puf和puhA操纵子的上调足以恢复prrA突变体光养生长的能力。 PrrA,一种全球性的氧化还原依赖性激活剂,以前被认为对于光养生长是必不可少的。据透露,据信可以独立工作的PrrBA和AppA-PpsR系统实际上是相互作用并协调地调节了光系统的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号