首页> 外文期刊>The Astrophysical journal >DYNAMICAL EXPANSION OF IONIZATION AND DISSOCIATION FRONTS AROUND A MASSIVE STAR. I. A MODE OF TRIGGERED STAR FORMATION
【24h】

DYNAMICAL EXPANSION OF IONIZATION AND DISSOCIATION FRONTS AROUND A MASSIVE STAR. I. A MODE OF TRIGGERED STAR FORMATION

机译:围绕恒星的电离和离解前缘的动态扩展。 I.恒星形成的模式

获取原文
获取原文并翻译 | 示例
           

摘要

We analyze the dynamical expansion of the H II region and outer photodissociation region (PDR) around a massive star by solving the UVand FUV radiation transfer and the thermal and chemical processes in a time-dependent hydrodynamics code. We focus on the physical structure of the shell swept up by the shock front (SF) preceding the ionization front (IF). After the IF reaches the initial Stroemgren radius, the SF emerges in front of the IF and a geometrically thin shell bounded by the IF and SF is formed. The gas density inside the shell is about 10~1-10~2 times as high as the ambient gas density. Initially, the dissociation fronts (DFs) expands faster than the IF, and the PDR is formed outside the H H region. Thereafter, the IF and SF gradually overtake the preceding DFs, and eventually the DFs are taken into the shell. The chemical composition within the shell is initially atomic, but hydrogen and carbon monoxide molecules are gradually formed. This is partly because the IF and SF overtake the DFs and the SF enters the molecular region, and partly because the reformation timescales of the molecules become shorter than the dynamical timescale. The gas shell becomes dominated by the molecular gas by the time of gravitational fragmentation, which agrees with some recent observations. A simple estimation of the star formation rate in the shell shows that these processes contribute significantly to the star formation rate in our Galaxy.
机译:我们通过解决随时间变化的流体力学代码中的UV和FUV辐射转移以及热和化学过程,分析了大质量恒星周围的H II区和外部光解离区(PDR)的动态扩展。我们专注于被电离前沿(IF)之前的冲击前沿(SF)扫掠的壳的物理结构。 IF到达初始Stroemgren半径后,SF出现在IF的前面,并形成了以IF和SF为边界的几何薄壳。壳体内部的气体密度约为环境气体密度的10〜1-10〜2倍。最初,解离前沿(DFs)的膨胀速度比IF快,并且PDR在H H区域之外形成。此后,IF和SF逐渐超过前面的DF,最终将DF放入外壳中。壳内的化学成分最初是原子的,但氢和一氧化碳分子逐渐形成。这部分是因为IF和SF超过了DF,而SF进入了分子区域,部分原因是分子的重整时间尺度变得比动态时间尺度短。重力碎裂时,气体壳由分子气体支配,这与最近的一些观察结果一致。对壳中恒星形成率的简单估算表明,这些过程对我们银河系中的恒星形成率有很大贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号