首页> 外文期刊>The Astrophysical journal >DYNAMICAL EXPANSION OF IONIZATION AND DISSOCIATION FRONT AROUND A MASSIVE STAR. II. ON THE GENERALITY OF TRIGGERED STAR FORMATION
【24h】

DYNAMICAL EXPANSION OF IONIZATION AND DISSOCIATION FRONT AROUND A MASSIVE STAR. II. ON THE GENERALITY OF TRIGGERED STAR FORMATION

机译:围绕恒星的电离和解离前的动态扩展。二。关于引发恒星形成的一般性

获取原文
获取原文并翻译 | 示例
       

摘要

We analyze the dynamical expansion of the H Ⅱ region, photodissociation region, and the swept-up shell, solving the UV and far-UV radiative transfer and the thermal and chemical processes in the time-dependent hydrodynamics code. Following our previous paper, we investigate the time evolutions with various ambient number densities and central stars. Our calculations show that basic evolution is qualitatively similar among our models with different parameters. The molecular gas is finally accumulated in the shell, and the gravitational fragmentation of the shell is generally expected. The quantitative differences among models are well understood with analytic scaling relations. The detailed physical and chemical structure of the shell is mainly determined by the incident far-UV flux and the column density of the shell, which also follow the scaling relations. The time of shell fragmentation and the mass of the gathered molecular gas are sensitive to the ambient number density. In the case of a low density, the shell fragmentation occurs over a longer timescale, and the accumulated molecular gas is more massive than in the case of a high density. The variations with different central stars are more moderate. The time of the shell fragmentation differs by a factor of several with the various stars of M_* = 12-101 solar mass. According to our numerical results, we conclude that the expanding H Ⅱ region should be an efficient trigger for star formation in molecular clouds if the mass of the ambient molecular material is large enough.
机译:我们分析了HⅡ区,光解离区和扫掠壳的动态扩展,以时变流体力学代码解决了UV和远UV辐射传递以及热和化学过程。根据之前的论文,我们研究了具有各种环境数密度和中心星的时间演化。我们的计算表明,在具有不同参数的模型之间,基本演化在质量上相似。分子气体最终聚集在壳中,并且通常期望壳的重力破碎。模型之间的数量差异可以通过解析比例关系很好地理解。壳的详细物理化学结构主要由入射的远紫外通量和壳的柱密度决定,它们也遵循比例关系。壳破裂的时间和聚集的分子气体的质量对环境数密度敏感。在低密度的情况下,壳破裂发生在更长的时间尺度上,并且所积累的分子气体比高密度的情况下更大。不同中央恒星的变化更为缓和。壳碎裂的时间因M_ * = 12-101太阳质量的各种恒星而相差数倍。根据我们的数值结果,我们得出结论,如果周围分子材料的质量足够大,则扩展的HⅡ区应该是分子云中恒星形成的有效触发因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号