首页> 外文期刊>The Astrophysical journal >MAGNETIC FIELDS IN STARBURST GALAXIES AND THE ORIGIN OF THE FIR-RADIO CORRELATION
【24h】

MAGNETIC FIELDS IN STARBURST GALAXIES AND THE ORIGIN OF THE FIR-RADIO CORRELATION

机译:星爆星系中的磁场与无线电辐射的起源。

获取原文
获取原文并翻译 | 示例
           

摘要

We estimate minimum energy magnetic fields (B_(min)) for a sample of galaxies with measured gas surface densities, spanning more than four orders of magnitude in surface density, from normal spirals to luminous starbursts. We show that the ratio of the minimum energy magnetic pressure to the total pressure in the ISM decreases substantially with increasing surface density. For the ultraluminous infrared galaxy Arp 220, this ratio is ~10~(-4). Therefore, if the minimum energy estimate is applicable, magnetic fields in starbursts are dynamically weak compared to gravity, in contrast to normal star-forming spiral galaxies. We argue, however, that rapid cooling of relativistic electrons in starbursts invalidates the minimum energy estimate. We assess a number of independent constraints on the magnetic field strength in starburst galaxies. In particular, we argue that the existence of the FIR-radio correlation implies that the synchrotron cooling timescale for cosmic-ray electrons is much shorter than their escape time from the galactic disk; this in turn implies that the true magnetic field in starbursts is significantly larger than B_(min). The strongest argument against such large fields is that one might expect starbursts to have steep radio spectra indicative of strong synchrotron cooling, which is not observed. However, we show that ionization and bremsstrahlung losses can flatten the nonthermal spectra of starburst galaxies even in the presence of rapid cooling, providing much better agreement with observed spectra. We further demonstrate that ionization and bremsstrahlung losses are likely to be important in shaping the radio spectra of most starbursts at GHz frequencies, thereby preserving the linearity of the FIR-radio correlation. We thus conclude that magnetic fields in starbursts are significantly larger than B_(min). We highlight several observations that can test this conclusion.
机译:我们估算了具有测量的气体表面密度的星系样本的最小能量磁场(B_(min)),该表面跨度超过四个数量级的表面密度,从正常旋涡到发光的星爆。我们表明,ISM中最小能量磁压与总压之比随表面密度的增加而显着降低。对于超发光红外星系Arp 220,该比率为〜10〜(-4)。因此,如果可以使用最小能量估计,则与正常的恒星形成旋涡星系相比,爆炸中的磁场与重力相比会动态减弱。但是,我们认为,星爆中相对论电子的快速冷却使最小能量估计无效。我们评估了星爆星系中磁场强度的许多独立约束。特别是,我们认为FIR-无线电相关性的存在暗示着宇宙射线电子的同步加速器冷却时间尺度比它们从银河盘的逃逸时间要短得多。这又意味着星爆中的真实磁场远大于B_(min)。反对如此大的磁场的最有力的论据是,人们可能期望星暴具有陡峭的无线电频谱,这表明强烈的同步加速器冷却,但没有观察到。但是,我们表明,即使在存在快速冷却的情况下,电离和致辐射损失也可以使星爆星系的非热光谱变平,从而与观察到的光谱更好地吻合。我们进一步证明,电离和致辐射损失在塑造大多数星爆在GHz频率下的无线电频谱时可能很重要,从而保持了FIR-无线电相关性的线性。因此,我们得出结论,爆炸中的磁场明显大于B_(min)。我们重点介绍了可以验证这一结论的一些观察结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号