...
首页> 外文期刊>The Astrophysical journal >The Extended Fe Distribution In The Intracluster Medium And The Implications Regarding Agn Heating
【24h】

The Extended Fe Distribution In The Intracluster Medium And The Implications Regarding Agn Heating

机译:铁在团簇内介质中的扩展分布及其对agn加热的影响

获取原文
获取原文并翻译 | 示例

摘要

We present a systematic analysis of XMM-Newton observations of eight cool-core clusters of galaxies and determine the Fe distribution in the intracluster medium relative to the stellar distribution in the central dominant galaxy (CDG). Our analysis shows that the Fe is significantly more extended than the stellar mass in the CDG in all of the clusters in our sample, with a slight trend of increasing extent with increasing central cooling time. The excess Fe within the central 100 kpc in these clusters can be produced by Type Ia supernovae from the CDG over the past 3-7 Gyr. Since the excess Fe primarily originates from the CDG, it is a useful probe for determining the motion of the gas and the mechanical energy deposited by AGN outbursts over the past~5 Gyr in the centers of clusters. We explore two possible mechanisms for producing the greater extent of the Fe relative to the stars in the CDG, bulk expansion of the gas and turbulent diffusion of the Fe. Assuming that the gas and Fe expand together, we find that a total energy of 10~(60)-10~(61) erg s~(-1) must have been deposited into the central 100 kpc of these clusters in order to produce the currently observed Fe distributions. Since the required enrichment time for the excess Fe is approximately 5 Gyr in these clusters, this gives an average AGN mechanical power over this time of 10~(43)-10~(44) erg s~(-1). The extended Fe distribution in cluster cores can also arise from turbulent diffusion. Assuming a steady state (i.e., the outward mass flux of Fe across a given surface is equal to the mass injection rate of Fe within that surface), we find that diffusion coefficients of 10~(29)-10~(30) cm~2 s~(-1) are required in order to maintain the currently observed Fe profiles. We find that heating by both turbulent diffusion of entropy and dissipation are important heating mechanisms in cluster cores. In half of the clusters with central cooling times greater than 1 Gyr, we find that heating by turbulent diffusion of entropy alone can balance radiative losses. In the remaining clusters, some additional heating by turbulent dissipation, with turbulent velocities of 150-300 km s~(-1), is required in order to balance radiative cooling. We also find that the average Type Ia supernova fraction within the central 100 kpc of these clusters is 0.53 (roughly twice the solar value), on the basis of the Si-to-Fe mass ratio. This implies a total (Type Ia plus core-collapse) supernova heating rate of less than 10% of the bolometric X-ray luminosity within the centers of clusters.
机译:我们目前对XMM-牛顿观测到的八个星系核心的系统分析,并确定相对于中央优势星系(CDG)的恒星分布,集群内介质中的Fe分布。我们的分析表明,在我们样品的所有簇中,Fe的含量远比CDG中的恒星质量更大,并且随着中央冷却时间的延长,Fe的含量略有增加的趋势。这些星团中心100 kpc内多余的Fe可以由Ia型超新星在过去3-7 Gyr的时间内由CDG产生。由于过量的铁主要来自CDG,因此对于确定团簇中心过去5 Gyr内AGN爆发的气体运动和机械能,它是一个有用的探针。我们探索了两种可能的机制,以相对于CDG中的恒星产生更大程度的铁,气体的体积膨胀和铁的湍流扩散。假设气体和铁一起膨胀,我们发现必须将总能量10〜(60)-10〜(61)erg s〜(-1)沉积到这些团簇的中心100 kpc中才能产生当前观察到的铁分布。由于在这些簇中富集铁所需的富集时间约为5 Gyr,因此在此时间内平均AGN机械力为10〜(43)-10〜(44)erg s〜(-1)。团簇核中扩展的铁分布也可能来自湍流扩散。假设处于稳定状态(即,Fe在给定表面上的向外质量通量等于该表面内Fe的质量注入速率),我们发现扩散系数为10〜(29)-10〜(30)cm〜需要2 s〜(-1)才能维持当前观察到的铁分布。我们发现,熵的湍流扩散和耗散引起的加热是簇状核中重要的加热机制。在中心冷却时间大于1 Gyr的半个星团中,我们发现仅通过熵的湍流扩散加热就可以平衡辐射损耗。在其余的星团中,为了平衡辐射冷却,需要通过湍流耗散进行额外的加热,湍流速度为150-300 km s〜(-1)。我们还发现,基于硅铁质量比,这些星团中心100 kpc内的Ia型超新星平均分数为0.53(约为太阳值的两倍)。这意味着总的(Ia型加上核塌陷)超新星加热速率小于星团中心内辐射热辐射X射线发光度的10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号