...
首页> 外文期刊>The Astrophysical journal >FUSE SPECTROSCOPY OF THE WHITE DWARF IN U GEMINORUM
【24h】

FUSE SPECTROSCOPY OF THE WHITE DWARF IN U GEMINORUM

机译:准双峰中白矮星的熔断光谱

获取原文
获取原文并翻译 | 示例

摘要

Observations of U Gem with FUSE confirm that the WD is heated by the outburst and cools during quiescence. At the end of an outburst, the best uniform-temperature WD model fits to the data indicate a temperature of 41,000-47,000 K, while in midquiescence, the temperature is 28,000-31,000 K, depending on the gravity assumed for the WD. Photospheric abundance patterns at the end of the outburst and in midquiescence show evidence of CNO processing. Improved fits to the spectra can be obtained assuming there is a hotter, heated portion of the WD, presumably an accretion belt, with a temperature of 60,000-70,000 K occupying 14%-32% of the surface immediately after outburst. However, other relatively simple models for the second component fit the data just as well, and there is no obvious signature that supports the hypothesis that the second component arises from a separate region of the WD surface. Hence, other physical explanations still must be considered to explain the time evolution of the spectrum of U Gem in quiescence. Strong orbital-phase-dependent absorption, most likely due to gas above the disk, was observed during the midquiescence spectrum. This material, which can be modeled in terms of gas with a temperature of 10,000-11,000 K and a density of 10~(13) cm~(-3), has a column density of ~2 x 10~(21) cm~(-2) at orbital phase 0.6-0.85 and is probably the same material that has been observed to cause dips in the light curve at X-ray wavelengths in the past. The discrepancy described by Naylor et al. between the radius of the WD derived, on the one hand, by the UV spectral analysis and the distance to U Gem and, on the other hand, by the orbital elements and the gravitational redshift, remains a serious problem.
机译:对带有FUSE的U Gem的观察证实,WD被突出物加热并在静止期间冷却。爆发结束时,最佳均匀温度WD模型拟合的数据表明温度为41,000-47,000 K,而处于静止状态时,温度为28,000-31,000 K,具体取决于WD假定的重力。爆发末期和中期的光球丰度模式显示了CNO处理的证据。假设WD出现较热,受热的部分(可能是吸积带),温度为60,000-70,000 K,在爆发后立即占据表面的14%-32%,则可以得到对光谱的改进拟合。但是,第二成分的其他相对简单的模型也适合该数据,并且没有明显的特征支持第二成分源自WD表面的单独区域的假设。因此,仍然必须考虑其他物理解释来解释静止状态下U Gem光谱的时间演变。在中静态​​光谱期间观察到强的轨道相位相关吸收,很可能是由于盘上方的气体所致。这种材料可以用温度为10,000-11,000 K且密度为10〜(13)cm〜(-3)的气体来建模,柱密度为〜2 x 10〜(21)cm〜。 (-2)处于轨道相0.6-0.85,并且可能与过去观察到的导致X射线波长的光曲线出现下降的材料相同。 Naylor等人描述的差异。一方面,通过紫外光谱分析得出的WD半径与到U Gem的距离之间的关系,另一方面,通过轨道元素和引力红移之间的关系仍然是一个严重的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号