...
首页> 外文期刊>The Astrophysical journal >A TRANSIENT HEATING MODEL FOR CORONAL STRUCTURE AND DYNAMICS
【24h】

A TRANSIENT HEATING MODEL FOR CORONAL STRUCTURE AND DYNAMICS

机译:冠状结构和动力学的瞬态加热模型

获取原文
获取原文并翻译 | 示例

摘要

A wealth of observational evidence for flows and intensity variations in nonflaring coronal loops leads to the conclusion that coronal heating is intrinsically unsteady and concentrated near the chromosphere. We have investigated the hydrodynamic behavior of coronal loops undergoing transient heating with one-dimensional numerical simulations in which the timescale assumed for the heating variations (3000 s) is comparable to the coronal radiative cooling time and the assumed heating location and scale height (10 Mm) are consistent with the values derived from TRACE studies. The model loops represent typical active region loops: 40―80 Mm in length, reaching peak temperatures up to 6 MK. We use ARGOS, our state-of-the-art numerical code with adaptive mesh refinement, in order to resolve adequately the dynamic chromospheric―coronal transition region sections of the loop. The major new results from our work are the following: (1) During much of the cooling phase, the loops exhibit densities significantly larger than those predicted by the well-known loop scaling laws, thus potentially explaining recent TRACE observations of overdense loops. (2) Throughout the transient heating interval, downflows appear in the lower transition region (T ~ 0.1 MK) whose key signature would be persistent, redshifted UV and EUV line emission, as have long been observed. (3) Strongly unequal heating in the two legs of the loop drives siphon flows from the more strongly heated footpoint to the other end, thus explaining the substantial bulk flows in loops recently observed by the Coronal Diagnostic Spectrometer and the Solar Ultraviolet Measurement of Emission Radiation instrument. We discuss the implications of our studies for the physical origins of coronal heating and related dynamic phenomena.
机译:大量的观测证据表明,非燃烧型日冕环中的流量和强度变化会得出结论,即日冕加热本质上是不稳定的,并且集中在色球层附近。我们用一维数值模拟研究了瞬态加热下的日冕环的流体动力学行为,其中一维加热变化的时间尺度(3000 s)与日冕辐射冷却时间以及假定的加热位置和尺度高度(10 Mm)相当。 )与TRACE研究得出的值一致。模型回路代表典型的活动区域回路:长度为40-80 Mm,达到最高温度达6 MK。我们使用带有自适应网格细化功能的最先进的数字代码ARGOS,以充分解析环路的动态色球-冠冕过渡区域部分。我们工作的主要新结果如下:(1)在许多冷却阶段中,环路的密度明显大于众所周知的环路缩放定律所预测的密度,因此有可能解释最近TRACE对过密环路的观察。 (2)在整个过渡加热期间,向下流动区域(T〜0.1 MK)出现了向下流动,长期以来观察到,其主要特征是持续的,红移的UV和EUV线发射。 (3)回路的两个支腿中的热量强烈不平等,导致虹吸从更强烈的加热点流向另一端,从而解释了日冕诊断光谱仪和太阳紫外线发射辐射测量仪最近观察到的回路中大量的流量。仪器。我们讨论了研究对日冕加热和相关动力学现象的物理成因的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号