首页> 外文期刊>The Astrophysical journal >THE DEEP GROTH STRIP SURVEY. Ⅶ. THE METALLICITY OF FIELD GALAXIES AT 0.26 < z < 0.82 AND THE EVOLUTION OF THE LUMINOSITY-METALLICITY RELATION
【24h】

THE DEEP GROTH STRIP SURVEY. Ⅶ. THE METALLICITY OF FIELD GALAXIES AT 0.26 < z < 0.82 AND THE EVOLUTION OF THE LUMINOSITY-METALLICITY RELATION

机译:深层带钢调查。 Ⅶ。 0.26

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Using spectroscopic data from the Deep Extragalactic Evolutionary Probe Groth Strip Survey (DGSS), we analyze the gas-phase oxygen abundances in the warm ionized medium for 64 emission-line field galaxies in the redshift range 0.26 < z < 0.82. These galaxies comprise a small subset selected from among 693 objects in the DGSS. They are chosen for chemical analysis by virtue of having the strongest emission lines. Oxygen abundances relative to hydrogen are in the range 8.4 < 12 + log(O/H) < 9.0 with typical internal plus systematic measurement uncertainties of 0.17 dex. The 64 DGSS galaxies collectively exhibit an increase in metallicity with B-band luminosity, i.e., an L-Z relation like that seen among local galaxies. Using the DGSS sample and local galaxy samples for comparison, we searched for a "second parameter" that might explain some of the dispersion seen in the L-Z relation. Parameters such as galaxy color, emission-line equivalent width, and effective radius were explored but found to be uncorrelated with residuals from the mean L-Z relation. Subsets of DGSS galaxies binned by redshift also exhibit L-Z correlations with slopes and zero points that evolve smoothly with redshift. DGSS galaxies in the highest redshift bin (z = 0.6-0.82) are brighter, on average, by ~1 mag at fixed metallicity than those in the lowest DGSS redshift bin (z = 0.26-0.40) and by up to ~2.4 mag compared to local (z < 0.1) emission-line field galaxies. Alternatively, DGSS galaxies in the highest redshift bin (z = 0.6-0.82) are, on average, 40% (0.15 dex) more metal-poor at fixed luminosity than local (z < 0.1) emission-line field galaxies. For 0.6 < z < 0.8 galaxies, the offset from the local L-Z relation is greatest for objects at the low-luminosity (M_B > -19) end of the sample and is vanishingly small for objects at the high-luminosity end of the sample (M_B ~ -22). We compare these data to simple single-zone, exponential-infall PEGASE2 models, which follow the chemical and luminous evolution of galaxies from formation to z = 0. A narrow range of model parameters can qualitatively produce the slope of the L-Z relation and the observed evolution of slope and zero point with redshift when at least two of the following are true: (1) low-mass galaxies have lower effective chemical yields than massive galaxies, (2) low-mass galaxies assemble on longer timescales than massive galaxies, and (3) low-mass galaxies begin the assembly process at a later epoch than massive galaxies. The single-zone models do a reasonable job of reproducing the observed evolution for the low-luminosity galaxies (M_B ~ -19) in our sample but fail to predict the relative lack of evolution in the L-Z plane observed for the most luminous galaxies (M_B ~ -22). More realistic multizone models will be required to explain the chemoluminous evolution of large galaxies.
机译:使用来自深河外演化探针生长条带调查(DGSS)的光谱数据,我们分析了红移范围为0.26 -19)端的对象,与本地LZ关系的偏移最大,而对于样本高发光度端的对象则为(( M_B〜-22)。我们将这些数据与简单的单区域,指数下降的PEGASE2模型进行比较,该模型遵循从形成到z = 0的星系的化学和发光演化。模型参数的范围狭窄,可以定性地产生LZ关系的斜率和观测到的当至少满足以下两个条件时,斜率和零点随红移的演变:(1)低质量星系的有效化学产率低于大质量星系;(2)低质量星系的组装时间长于大质量星系,并且(3)低质量星系比大质量星系在更晚的时期开始组装过程。单区模型可以合理地再现我们样本中低发光星系(M_B〜-19)观测到的演化,但无法预测大多数发光星系(M_B)在LZ平面观测到的相对缺乏演化。 〜-22)。需要更现实的多区域模型来解释大星系的化学演化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号