...
首页> 外文期刊>The Astrophysical journal >THE EFFECT OF MULTIPLE SCATTERING ON THE POLARIZATION FROM AXISYMMETRIC CIRCUMSTELLAR ENVELOPES. I. PURE THOMSON SCATTERING ENVELOPES
【24h】

THE EFFECT OF MULTIPLE SCATTERING ON THE POLARIZATION FROM AXISYMMETRIC CIRCUMSTELLAR ENVELOPES. I. PURE THOMSON SCATTERING ENVELOPES

机译:多次散射对对称轴对称包络极化的影响。 I.纯汤姆森散射信封

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We investigate, via a Monte Carlo computer code, the effect of multiple Thomson scattering on the continuum polarization arising from axisymmetric circumstellar envelopes such as equatorial disks, ellipsoidal envelopes, and polar jets or plumes. Previous single-scattering models that incorporate attenuation by electron scattering find that the polarization is reduced below the single-scattering without attenuation results. Furthermore, it is often assumed that multiple scattering will only further reduce the polarization. However, we find instead that multiple scattering in the envelope increases the polarization above this "single-scattering plus attenuation" approximation. This increase in the polarization occurs because multiple scattering arises predominantly within the optically thick disk or plume. Thus, the orientation of the scattering planes for these multiply scattered photons is biased toward a common direction (e.g., the plane of the disk). For equatorial disk geometries, multiple scatterings reduce the component of the electric vector parallel to this plane, leaving a net increased polarization that is perpendicular to the disk. In the case of polar jets, multiple scattering occurs preferentially along the optically thick jet axis, leaving the photons unpolarized until they scatter out of the jet. Those that are scattered into the observer's direction all possess similar polarization position angles, so there is little polarimetric cancellation, yielding an increase in the polarization. In the absence of any absorptive opacity, which would reduce the number of multiple scatterings, we find that multiple scattering produces high levels of polarization (of order 3%-4% or more) in circumstellar disks. This result is in contrast to previous investigations that used the single-scattering plus attenuation approximation, which predicted maximum polarization levels of about 2% for circumstellar disk geometries. We have also investigated the polarization when the central star is either a finite sphere or a point source of radiation. Single-scattering calculations include a geometrical "depolarization factor" that accounts for the finite solid angle subtended by the star and corrects the point-source approximation. This depolarization factor results in a reduced single-scattering polarization level for the finite source compared to the point source. However, when multiple scattering is included we find that, for large circumstellar optical depths, a finite source yields larger levels of polarization than a point source. This higher polarization occurs because more photons enter the disk from a finite star than from the more highly attenuated point source. These additional photons are multiply scattered, raising the polarization for a finite star above that for a point-source star.
机译:我们通过蒙特卡洛计算机代码研究了多个汤姆森散射对由轴对称的星形卫星包络(如赤道盘,椭圆形包络和极喷射或羽流)引起的连续极化的影响。先前的通过电子散射合并衰减的单散射模型发现,极化降低到单散射以下,没有衰减结果。此外,通常假设多次散射只会进一步减小极化。但是,我们发现,包络中的多次散射会在“单散射加衰减”近似值之上增加极化。发生偏振增加的原因是,在光学厚度的光盘或羽流中主要会发生多次散射。因此,这些多重散射光子的散射平面的取向偏向共同的方向(例如,盘的平面)。对于赤道盘几何形状,多次散射会减少平行于该平面的电矢量分量,从而使垂直于盘的极化净增加。在极性射流的情况下,优先沿光学厚度的射流轴发生多次散射,使光子保持非极化状态,直到它们从射流​​中散射出去。散射到观察者方向的那些偏振角都具有相似的偏振位置角,因此几乎没有偏振消除,从而导致偏振增加。在不存在任何吸收性不透明性的情况下(这将减少多次散射的数量),我们发现多次散射会在圆盘上产生高水平的极化(大约3%-4%或更高)。此结果与以前使用单散射加衰减近似法的研究相反,后者预测了星盘几何形状的最大极化水平约为2%。我们还研究了当中心恒星是有限球体或辐射的点源时的极化情况。单散射计算包括一个几何“去极化因子”,该因子考虑了恒星对向的有限立体角并校正了点源近似值。与点源相比,该去极化因子导致有限源的单散射极化水平降低。但是,当包括多重散射时,我们发现,对于较大的星际光学深度,有限光源比点光源产生更大的偏振度。发生这种更高的极化的原因是,从有限的恒星进入磁盘的光子要比从衰减程度更高的点源进入的光子更多。这些额外的光子被倍增散射,从而使有限恒星的极化高于点源恒星的极化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号