...
首页> 外文期刊>The Astrophysical journal >EVOLUTION OF THE SOLAR NEBULA. Ⅲ. PROTOPLANETARY DISKS UNDERGOING MASS ACCRETION
【24h】

EVOLUTION OF THE SOLAR NEBULA. Ⅲ. PROTOPLANETARY DISKS UNDERGOING MASS ACCRETION

机译:太阳星云的演变。 Ⅲ。持续增加的原行星盘

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The physical structure of a protoplanetary disk determines the mechanisms responsible for the disk's dynamical evolution as well as how the earliest phases of planetary accumulation proceeded. Thermal and density profiles control the extent to which processes such as self-gravitational forces, convective instability, and magnetic fields contribute to the dynamical evolution of the disk. Thermal profiles also affect the chemical composition of the grain aggregates that eventually formed planetesimals through their control of the condensation and sublimation of iron, silicate, and ice grains. A two-dimensional radiative hydrodynamics code has been used to compute a number of quasi-static models of protoplanetary disks. Variations explored by the models include changes in the disk mass, stellar mass, disk mass accretion rate, initial adiabat, radial density profile, energy source, and dust grain opacity. The models represent temporal " snapshots" that can be used to infer the evolution of disks as, e.g., the disk mass or disk mass accretion rates decrease. A general property of low-mass (~ 0.02 solar mass) disks being heated by mass accretion from the cloud envelope at ~10~(-6) to 10~(-5) solar mass yr~(-1) is a relatively hot (midplane temperature T_m > 1200 K) inner region surrounded by a much cooler (T_m ~100 K) outer disk. Such a thermal profile naturally leads to the formation of rocky inner planets and icy outer planets, with the ice condensation point never falling closer than about 3 AU from the protostar—giant planets must form outside this radius. Midplane temperatures greater than 1200 K are consistent with the depletions of moderately volatile elements observed in inner solar system bodies. Disk temperatures drop sufficiently with vertical height or radial position, or with decreased disk mass or disk mass accretion rates, to permit the plausible incorporation of both ~1200 K and less than 700 K components in chondritic meteorites. Surface densities of low-mass disks appear to be inadequate for the disk to evolve through gravitational torques, and the models tend to be largely stable with respect to convection, which could otherwise lead to turbulence and significant viscous torques. Thermal ionization of K and Na may allow the generation of significant magnetic fields near the midplane in the inner disk, while cosmic rays and short-lived nuclides ionize the outer disk, perhaps eliminating the possibility of a field-free gap between these two regions and allowing continued magnetically driven inflow of disk mass to the protostar.
机译:原行星盘的物理结构决定了引起该盘动力学演化的机制,以及行星聚积最早阶段的进行方式。热分布和密度分布控制诸如自重力,对流不稳定性和磁场等过程对磁盘动态演变的贡献程度。热分布图还通过控制铁,硅酸盐和冰粒的凝结和升华,影响最终形成小行星的谷物聚集体的化学成分。二维辐射流体力学代码已用于计算原行星盘的许多准静态模型。模型探索的变化包括圆盘质量,恒星质量,圆盘质量积聚率,初始绝热体,径向密度分布,能源和粉尘颗粒不透明度的变化。这些模型表示时间“快照”,其可用于推断磁盘的演变,例如磁盘质量或磁盘质量增加率降低。低质量(〜0.02太阳质量)盘通过质量积聚从云包层从〜10〜(-6)到10〜(-5)太阳质量yr〜(-1)的一般性质是相对较热的(中平面温度T_m> 1200 K)内部区域被较冷的(T_m〜100 K)外部磁盘包围。这样的温度分布自然会导致岩石内部行星和冰冷外部行星的形成,并且冰的凝结点永远不会比原恒星下降到约3 AU以下,因为巨行星必须形成在该半径之外。高于1200 K的中平面温度与在太阳系内部观测到的中等挥发性元素的消耗一致。磁盘温度随垂直高度或径向位置或磁盘质量或磁盘质量积聚率的降低而充分下降,从而可以使约1200 K和少于700 K的组分合理地掺入到球状陨石中。低质量圆盘的表面密度似乎不足以使圆盘通过重力扭矩演化,并且这些模型在对流方面趋于稳定,否则可能导致湍流和显着的粘性扭矩。钾和钠的热电离可允许在内盘中平面附近产生大量磁场,而宇宙射线和短寿命核素则使外盘电离,这也许消除了这两个区域之间无磁场间隙的可能性。允许磁驱动的磁盘持续不断地流入原恒星。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号