...
首页> 外文期刊>The Astrophysical journal >GASDYNAMICS AND STARBURSTS IN MAJOR MERGERS
【24h】

GASDYNAMICS AND STARBURSTS IN MAJOR MERGERS

机译:重大并购中的动力和星爆

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using numerical simulation, we study the development of gaseous inflows and triggering of starburst activity in mergers of disk galaxies of comparable mass. Our models cover a range of orbits and internal structures for the merging galaxies. In all encounters studied, the galaxies experience strong gaseous inflows and, using a density-dependent Schmidt law to model star formation, moderate to intense star-burst activity. We find that galaxy structure plays a dominant role in regulating activity. The gaseous inflows are strongest when galaxies with dense central bulges are in the final stages of merging, while inflows in bulgeless galaxies are weaker and occur earlier in the interaction. Orbital geometry plays only a relatively modest role in the onset of collisionally induced activity. Through an analysis of the torques acting on the gas, we show that these inflows are generally driven by gravitational torques from the host galaxy (rather than the companion) and that dense bulges act to stabilize galaxies against bar modes and inflow until the galaxies merge, at which point rapidly varying gravitational torques drive strong dissipation and inflow of gas in the merging pair. The strongest inflows (and associated starburst activity) develop in coplanar encounters, while the activity in inclined mergers is somewhat less intense and occurs slightly later during the merger. To the extent that a Schmidt law is a reasonable description of star formation in these systems, the starbursts that develop in mergers of galaxies with central bulges represent an increase in the star formation rate of two orders of magnitude over that in isolated galaxies. We find that the gaseous and stellar morphology and star-forming properties of these systems provide a good match to those of observed ultraluminous infrared galaxies. Our results imply that the internal structure of the merging galaxies, rather than orbital geometry, may be the key factor in producing ultra-luminous infrared galaxies.
机译:使用数值模拟,我们研究了可比质量的盘状星系合并过程中气体流入的发展和星爆活动的触发。我们的模型涵盖了合并星系的一系列轨道和内部结构。在所研究的所有遭遇中,星系都会经历强烈的气态流入,并且使用依赖于密度的施密特定律来模拟恒星形成时,会产生中等至强烈的星爆活动。我们发现星系结构在调节活动中起主导作用。当具有密集的中央凸起的星系处于合并的最后阶段时,气体流入最强,而没有凸起的星系的流入则更弱并且发生在相互作用的早期。轨道几何在碰撞诱发的活动的开始中仅起相对适度的作用。通过对作用在气体上的扭矩的分析,我们发现这些流入通常是由来自主星系(而不是伴星)的重力所驱动的,并且密集的凸起起到稳定星系的作用,使其免受条形和流入,直到星系合并,在这一点上,迅速变化的重力转矩驱动合并对中的强大消散和气体流入。最强的流入(和相关的星爆活动)发生在共面相遇中,而倾斜合并中的活动强度较小,并且在合并过程中稍晚发生。在一定程度上,施密特定律是这些系统中恒星形成的合理描述,在星系与中央凸起合并的过程中形成的星爆表示恒星形成率比孤立星系增加了两个数量级。我们发现,这些系统的气态和恒星形态以及恒星形成特性与观察到的超发光红外星系非常匹配。我们的结果表明,合并星系的内部结构而不是轨道几何形状可能是产生超发光红外星系的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号