...
首页> 外文期刊>The Astrophysical journal >A NEW CRITERION FOR BAR-FORMING INSTABILITY IN RAPIDLY ROTATING GASEOUS AND STELLAR SYSTEMS. I. AXISYMMETRIC FORM
【24h】

A NEW CRITERION FOR BAR-FORMING INSTABILITY IN RAPIDLY ROTATING GASEOUS AND STELLAR SYSTEMS. I. AXISYMMETRIC FORM

机译:快速旋转气态和星状系统中条形不稳定性的新判据。 I.轴对称形式

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We analyze previous results on the stability of uniformly and differentially rotating, self-gravitating, gaseous and stellar, axisymmetric systems to derive a new stability criterion for the appearance of toroidal, m = 2 intermediate or I-modes and bar modes. In the process, we demonstrate that the bar modes in stellar systems and the m = 2 I-modes in gaseous systems have many common physical characteristics and only one substantial difference: because of the anisotropy of the stress tensor, dynamical instability sets in at lower rotation in stellar systems. This difference is reflected also in the new stability criterion. The new stability parameter α = T_J/|W| is formulated first for uniformly rotating systems and is based on the angular momentum content rather than on the energy content of a system. (T_J ≡ LΩ_J/2; L is the total angular momentum; Ω_J is the Jeans frequency introduced by self-gravity; and W is the total gravitational potential energy.) For stability of stellar systems α ≤ 0.254-0.258 while α ≤ 0.341-0.354 for stability of gaseous systems. For uniform rotation, one can write α = (ft/2)~(1/2), where t ≡ T/|W|, T is the total kinetic energy due to rotation, and f is a function characteristic of the topology/connectedness and the geometric shape of a system. Equivalently, α = t/χ, where χ ≡ Ω/Ω_J and Ω is the rotation frequency. Using these forms, α can be extended to and calculated for a variety of differentially rotating, gaseous and stellar, axisymmetric disk and spheroidal models whose equilibrium structures and stability characteristics are known. In this paper, we also estimate α for gaseous toroidal models and for stellar disk systems embedded in an inert or responsive "halo." We find that the new stability criterion holds equally well for all these previously published axisymmetric models.
机译:我们分析了均匀旋转和不均匀旋转,自重,气态和星状,轴对称系统的稳定性的先前结果,从而得出了环形,m = 2中间或I型和棒状模态出现的新稳定性标准。在此过程中,我们证明了恒星系统中的条形模态和气态系统中的m = 2 I型模态具有许多共同的物理特性,并且只有一个实质性的区别:由于应力张量的各向异性,动态不稳定性会降低恒星系统中的旋转。这种差异也反映在新的稳定性标准中。新的稳定性参数α= T_J / | W |首先为均匀旋转的系统制定公式,它基于角动量含量而不是系统的能量含量。 (T_J≡LΩ_J/ 2; L是总角动量;Ω_J是由自重引入的吉恩斯频率; W是总引力势能。)对于恒星系统,α≤0.254-0.258,而α≤0.341-气体系统的稳定性为0.354。对于均匀旋转,可以写成α=(ft / 2)〜(1/2),其中t≡T / | W |,T是旋转引起的总动能,f是拓扑的函数特征/连接性和系统的几何形状。等效地,α= t /χ,其中χΩΩ/Ω_J和Ω是旋转频率。使用这些形式,可以将α扩展到已知平衡结构和稳定性特征的各种微分旋转,气态和星状,轴对称盘状和球状模型并对其进行计算。在本文中,我们还估计了气态环形模型和嵌在惰性或响应性“晕轮”中的恒星盘系统的α。我们发现对于所有这些先前已发布的轴对称模型,新的稳定性准则同样适用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号