...
首页> 外文期刊>The Astrophysical journal >ALFVEN WAVES IN INTERSTELLAR GASDYNAMICS
【24h】

ALFVEN WAVES IN INTERSTELLAR GASDYNAMICS

机译:星际星云中的阿尔文波

获取原文
获取原文并翻译 | 示例

摘要

Magnetohydrodynamic (MHD) waves contribute a significant pressure in both the diffuse interstellar medium and in molecular clouds. Alfven waves are subject to less damping than compressive MHD waves and are therefore likely to be the dominant mode in astrophysical environments. Provided that the medium in which the waves are propagating is slowly varying, the dynamical effects of ideal MHD waves are governed by equations derived by Dewar. We show that these equations are similar in form to the equations of radiation hydrodynamics to order v/c, provided that the radiation is nearly isotropic. For the case of Alfven waves, the pressure due the waves, P_w, is isotropic. Furthermore, P_w is directly observable through the non-thermal line width σ_(nt); for a randomly oriented field, P_w = (3/2)ρσ_(nt)~2. In several simple cases, including that in which the Alfven waves are isotropic, that in which the density is spatially uniform, and that in which the medium undergoes a self-similar contraction or expansion, undamped Alfven waves behave like a gas with a ratio of specific heats of 3/2; i.e., pressure variations are related to density variations by ΔlnP_w = γ_wΔlnρ with γ_w = 3/2. In a spatially nonuniform cloud, γ_w generally depends on position; an explicit expression is given. In the opposite limit of rapid variations, such as in a strong shock, the wave magnetic field behaves like a static field and the wave pressure can increase as fast as ρ~2, depending on the orientation of the shock and the polarization of the waves. The jump conditions for a shock in a medium containing MHD waves are given. For strong nonradiative shocks, neither the wave pressure nor the static magnetic field pressure is significant downstream, but for radiative shocks these two pressures can become dominant. Alfven waves are essential in supporting molecular clouds against gravitational collapse. In a static cloud with a nonuniform density ρ(r), the spatial variation of the wave pressure is given by the polytropic relation P_w(r) ∝ ρ(r)~(γp) with γ_p = 1/2. This generalizes the result obtained by Fatuzzo & Adams and is consistent with observations showing that molecular clouds have velocity dispersions that increase outward. The polytropic index γ_p for Alfven waves differs substantially from the adiabatic index γ_w, which has implications for the gravitational stability of molecular clouds.
机译:磁流体动力学(MHD)波在星际弥漫介质和分子云中都产生了巨大的压力。 Alfven波比MHD压缩波的阻尼要小,因此很可能是天体环境中的主导模式。假设波在其中传播的介质是缓慢变化的,那么理想的MHD波的动力效应将由杜瓦(Dewar)推导的方程式控制。我们表明,只要辐射近似各向同性,这些方程在形式上类似于辐射流体动力学方程(v / c)。对于Alfven波,由于波引起的压力P_w是各向同性的。此外,通过非热线宽度σ_(nt)可直接观察到P_w。对于随机取向的场,P_w =(3/2)ρσ_(nt)〜2。在几种简单的情况下,包括Alfven波是各向同性的,密度在空间上是均匀的以及介质经历自相似的收缩或膨胀的情况,未阻尼的Alfven波的行为类似于气体,其比率为比热为3/2;即,压力变化与密度变化相关,ΔlnP_w=γ_wΔlnρ,γ_w= 3/2。在空间上不均匀的云中,γ_w通常取决于位置。给出了一个明确的表达式。在快速变化的相反极限(例如强烈的冲击)中,波磁场的行为类似于静态磁场,并且波压力可以高达ρ〜2的速度增加,具体取决于冲击的方向和波的极化。给出了包含MHD波的介质中电击的跳跃条件。对于强烈的非辐射冲击,波压和静磁场压力都不在下游显着,但是对于辐射冲击,这两个压力可以成为主导。 Alfven波对于支持分子云抵抗重力坍塌至关重要。在具有非均匀密度ρ(r)的静态云中,波浪压力的空间变化由多变关系P_w(r)tropicρ(r)〜(γp)给出,其中γ_p= 1/2。这概括了Fatuzzo和Adams的结果,并且与观察结果一致,该观察结果表明分子云具有向外增加的速度色散。 Alfven波的多变指数γ_p与绝热指数γ_w明显不同,这对分子云的重力稳定性有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号