首页> 外文期刊>The Astrophysical journal >COLLAPSE AND FRAGMENTATION OF MOLECULAR CLOUD CORES. Ⅴ. LOSS OF MAGNETIC FIELD SUPPORT
【24h】

COLLAPSE AND FRAGMENTATION OF MOLECULAR CLOUD CORES. Ⅴ. LOSS OF MAGNETIC FIELD SUPPORT

机译:分子云的折叠和碎片化。五。磁场损失

获取原文
获取原文并翻译 | 示例
           

摘要

The fragmentation mechanism has been quite successful at providing an explanation for the formation of binary stars during the collapse phase of dense cloud cores. However, nearly all fragmentation calculations to date have ignored the effects of magnetic fields, whereas magnetic fields are generally regarded as the dominant force in molecular clouds. Here, we present the first three-dimensional, radiative hydro-dynamical models of the collapse and fragmentation of dense molecular cloud cores, including the effects of magnetic fields and ambipolar diffusion. Starting from a prolate, Gaussian cloud that would collapse and fragment in the absence of magnetic fields (a thermally supercritical cloud), we introduce sufficient magnetic field support [through the magnetic field pressure, B~2/8π, with B = B_0(ρ/ρ_0)~κ] to ensure a magnetically subcritical (stable) cloud. The effects of ambipolar diffusion are then simulated by reducing the magnetic pressure scaling factor (B_0) over a specified time interval ( = t_(AD)), which leads to a magnetically supercritical cloud and collapse. The estimated timescale for ambipolar diffusion in these dense clouds is about 10 free-fall times. The numerical models show that when t_(AD) is as long as 10 or even 20 free-fall times, fragmentation into a binary can still occur. The main effect of the magnetic field support is to delay somewhat the formation of the binary protostar. Once the dynamic collapse phase begins, a rapidly rotating, (β_i = E_(rot)/|E_(grav)| = 0.12) cloud fragments into a binary protostar. While it remains to be seen if magnetic fields can stifle fragmentation in slowly rotating clouds, rapidly rotating, magnetically supported clouds appear to be quite capable of forming binary stars.
机译:碎片机制已经非常成功地提供了对密集云芯塌陷阶段双星形成的解释。但是,迄今为止,几乎所有碎片计算都忽略了磁场的影响,而磁场通常被视为分子云中的主导力。在这里,我们介绍了致密分子云芯塌陷和破碎的第一个三维辐射流体动力学模型,包括磁场和双极性扩散的影响。从没有磁场的情况下会破裂并分裂的扁长高斯云(热超临界云)开始,我们引入了足够的磁场支持[通过磁场压力B〜2 /8π,其中B = B_0(ρ /ρ_0)〜κ]以确保形成磁性亚临界(稳定)的云。然后,通过在指定的时间间隔(= t_(AD))内减小磁压比例因子(B_0)来模拟双极性扩散的影响,这会导致磁超临界云并坍塌。在这些密集的云中,双极性扩散的估计时间尺度约为10次自由降落时间。数值模型表明,当t_(AD)长达10甚至20次自由落体时间时,仍然会碎片化为二进制。磁场支撑的主要作用是在某种程度上延迟了二元原恒星的形成。一旦动态塌陷阶段开始,迅速旋转的(β_i= E_(rot)/ | E_(grav)| = 0.12)云碎片分裂为双星原恒星。虽然磁场是否能抑制缓慢旋转的云中的碎片尚有待观察,但快速旋转的,磁性支撑的云似乎能够形成双星。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号