首页> 外文期刊>The Astrophysical journal >SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF COUNTERROTATING DISK FORMATION IN SPIRAL GALAXIES
【24h】

SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF COUNTERROTATING DISK FORMATION IN SPIRAL GALAXIES

机译:旋涡星系中反盘形成的光滑粒子水动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

We present the results of smoothed particle hydrodynamics (SPH) simulations of the formation of a massive counterrotating disk in a spiral galaxy. The current study revisits and extends (with SPH) previous work carried out with sticky particle gas dynamics, in which adiabatic gas infall and a retrograde gas-rich dwarf merger were tested as the two most likely processes for producing such a counterrotating disk. We report on experiments with a cold primary similar to our Galaxy, as well as a hot, compact primary modeled after NGC 4138. We have also conducted numerical experiments with varying amounts of prograde gas in the primary disk and an alternative infall model (a spherical shell with retrograde angular momentum). The structure of the resulting counterrotating disks is dramatically different with SPH. The disks we prpduce are considerably thinner than the primary disks and those produced with sticky particles. The timescales for counterrotating disk formation are shorter with SPH, because the gas loses kinetic energy and angular momentum more rapidly. Spiral structure is evident in most of the disks, but an exponential radial profile is not a natural by-product of these processes. The infalling gas shells that we tested produce counterrotating bulges and rings rather than disks. The presence of a considerable amount of preexisting prograde gas in the primary causes, at least in the absence of star formation, a rapid inflow of gas to the center and a subsequent hole in the counterrotating disk. For a normal counterrotating disk to form, there must be either little or no preexisting prograde gas in the primary, or its dissipative influence must be offset by significant star formation activity. The latter scenario, along with the associated feedback to the interstellar medium, may be necessary to produce a counterrotating disk similar in scale length and scale height to the primary disk. In general, our SPH experiments yield stronger evidence to suggest that the accretion of massive counterrotating disks drives the evolution of the host galaxies toward earlier (SO/Sa) Hubble types.
机译:我们介绍了在螺旋星系中形成巨大的反向旋转盘的平滑粒子流体动力学(SPH)模拟的结果。当前的研究回顾并扩展了(利用SPH)以前用粘性颗粒气体动力学进行的工作,其中绝热气体侵入和逆向富气矮化合并被测试为生产这种反向盘的两个最可能的过程。我们报告了使用类似于我们的银河系的冷初级气体以及根据NGC 4138建模的热致密初级气体的实验。我们还进行了数值试验,其中在初级盘中存在不同量的正向气体,还有一个替代的落入模型(球形逆向角动量的弹壳)。 SPH所产生的反向旋转盘的结构有很大不同。我们生产的磁盘比原始磁盘和带有粘性颗粒的磁盘要薄得多。使用SPH时,反向旋转盘形成的时间尺度更短,因为气体失去动能和角动量的速度更快。在大多数磁盘中,螺旋结构都很明显,但是指数径向轮廓并不是这些过程的自然副产物。我们测试的下降的气体弹壳会产生反向旋转的凸起和环,而不是盘。至少在没有恒星形成的情况下,主要是由于存在大量的预先存在的高级气体,气体会快速流入中心并在反向旋转盘上产生随后的孔。为了形成正常的反向旋转盘,初级中必须几乎没有或没有预先存在的推进气体,或者其耗散影响必须通过显着的恒星形成活动来抵消。后一种情况,以及对星际介质的相关反馈,可能是生产反向旋转盘的必要条件,该反向旋转盘的标尺长度和标尺高度与主圆盘相似。总的来说,我们的SPH实验产生了更强有力的证据,表明大量反向旋转盘的积聚推动了宿主星系向更早(SO / Sa)哈勃星系的演化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号