首页> 外文期刊>Acta astronautica >Advanced system on a chip microelectronics for spacecraft and science instruments
【24h】

Advanced system on a chip microelectronics for spacecraft and science instruments

机译:先进的片上微电子系统,用于航天器和科学仪器

获取原文
获取原文并翻译 | 示例
       

摘要

The explosive growth of the modern microelectronics field opens new horizons for the development of new lightweight, low power, and smart spacecraft and science instrumentation systems in the new millennium explorations. Although this growth is mostly driven by the commercial need for low power, portable and computationally intensive products, the applicability is obvious in the space sector. The additional difficulties needed to be overcome for applicability in space include radiation hardness for total ionizing dose and single event effects (SEE), and reliability. Additionally, this new capability introduces a whole new philosophy of design and R& D, with strong implications in organizational and inter-agency program management. One key component specifically developed towards low power, small size, highly autonomous spacecraft systems, is the smart sensor remote input/output (TRIO) chip. TRIO can interface to 32 transducers with current sources/sinks and voltage sensing. It includes front-end analog signal processing, a 10-bit ADC, memory, and standard serial and parallel I/Os. These functions are very useful for spacecraft and subsystems health and status monitoring, and control actions. The key contributions of the TRIO are feasibility of modular architectures, elimination of several miles of wire harnessing, and power savings by orders of magnitude. TRIO freely operates from a single power supply 2.5-5.5 V with power dissipation < 10 mW. This system on a chip device rapidly becomes a NASA and Commercial Space standard as it is already selected by thousands in several new millennium missions, including Europa Orbiter, Mars Surveyor Program, Solar Probe, Pluto Express, Stereo, Contour, Messenger, etc. In the Science Instrumentation field common instruments that can greatly take advantage of the new technologies are: energetic-particle/plasma and wave instruments, imagers, mass spectrometers, X-ray and UV spectrographs, magnetometers, laser rangefinding instruments, etc. Common measurements that apply to many of these instruments are precise time interval measurement and high resolution read-out of solid state detectors. A precise time interval measurement chip was specially developed that achieves ~100 ps (x10 improvement) time resolution at a power dissipation ~20 mW (x50 improvement), dead time ~1.5 μs (x20 improvement), and chip die size 5 mm x 5 mm versus two 20 cm x 20 cm doubled sided boards. This device is selected as a key enabling technology for several NASA particle, delay line imaging, and laser range finding instruments onboard (NASA Image, Messenger, etc. missions). Another device with universal application is radiation energy read-out from solid state detectors. Multi-channel low-power and end-to-end sensor input―digital output is key for the new generation instruments. The readout channel comprises of a Charge Sensitive Preamplifier with a target sensitivity of ~1 KeV FWHM at 20 pf detector capacitance, a Shaper Amplifier with programmable time constant/gain, and an ADC. The read-out chip together with the precise time interval chip comprises the essential elements of a common particle spectroscopy instrument. To mention some more applications fast-signal acquisition―and digitization is a very useful function for a category of instrument such as mass spectroscopy and profile laser rangefinding. The single chip approach includes a high bandwidth preamplifier, fast sampling ~5 ns, analog memory ~10K locations, 12-bit ADC and serial/parallel I/Os. The wealth of the applications proves the advanced microelectronics field as a key enabling technology for the new millennium space exploration.
机译:现代微电子领域的爆炸性增长为在新的千年探索中开发新的轻型,低功耗,智能航天器和科学仪器系统开辟了新的视野。尽管这种增长主要是由对低功耗,便携式和计算密集型产品的商业需求推动的,但在航天领域的适用性显而易见。为了在空间上适用,需要克服的其他困难包括总电离剂量和单事件效应(SEE)的辐射硬度以及可靠性。此外,这项新功能引入了全新的设计和研发理念,对组织和机构间计划管理产生了重大影响。智能传感器远程输入/输出(TRIO)芯片是专门针对低功率,小尺寸,高度自主的航天器系统开发的关键组件。 TRIO可以通过电流源/灌电流和电压感应与32个传感器接口。它包括前端模拟信号处理,10位ADC,存储器以及标准的串行和并行I / O。这些功能对于航天器和子系统的健康和状态监视以及控制动作非常有用。 TRIO的主要贡献是模块化体系结构的可行性,消除了数英里的线束,并节省了几个数量级的功率。 TRIO可通过2.5-5.5 V单电源自由工作,功耗小于10 mW。该片上系统系统迅速成为NASA和商业空间标准,因为它已经在数千个新的千年任务中被数千人选中,其中包括Europa Orbiter,火星测量师计划,Solar Probe,Pluto Express,Stereo,Contour,Messenger等。科学仪器领域可以充分利用新技术的常见仪器包括:高能粒子/等离子和波动仪器,成像仪,质谱仪,X射线和UV光谱仪,磁力计,激光测距仪等。这些仪器中有许多是精确的时间间隔测量和固态检测器的高分辨率读数。专门开发了一种精确的时间间隔测量芯片,该芯片在〜20 mW(x50改进)的功耗下达到〜100 ps(x10改进)的时间分辨率,死区时间〜1.5μs(x20改进)的死区时间为1.5 mm x 5毫米与两个20厘米x 20厘米的双面板。该设备被选为多种NASA粒子,延迟线成像和机载激光测距仪(NASA Image,Messenger等任务)的关键启用技术。通用的另一种设备是从固态检测器读出辐射能。多通道低功耗和端到端传感器输入-数字输出是新一代仪器的关键。读出通道包括目标灵敏度为20 pf检测器电容时目标灵敏度为〜1 KeV FWHM的电荷敏感前置放大器,具有可编程时间常数/增益的整形放大器和ADC。读出芯片与精确的时间间隔芯片一起构成了普通粒子光谱仪的基本组成部分。要提到更多应用,快速信号采集和数字化对于诸如质谱和轮廓激光测距之类的仪器来说是非常有用的功能。单芯片方法包括高带宽前置放大器,〜5 ns的快速采样,〜10K的模拟存储器,12位ADC和串行/并行I / O。大量的应用程序证明了先进的微电子领域是新千年太空探索的关键支持技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号