首页> 外文期刊>Acta astronautica >Analysis of lithium-combustion power systems for extreme environment spacecraft
【24h】

Analysis of lithium-combustion power systems for extreme environment spacecraft

机译:极端环境航天器锂燃烧动力系统分析

获取原文
获取原文并翻译 | 示例
           

摘要

The longest duration mission on the Venus surface was Venera 13 at just over 2 h. This time constraint was due to limited battery power life and craft thermal management challenges. A lithium combustion based power system has been proposed to increase landed mission durations for Venus and other extreme environment targets. This paper presents a new detailed thermodynamic and heat transfer model of a conceptual lithium combustion power system. Findings are applied to specify engineering requirements for potential missions. Results indicate that a lithium combustion power system using the in-situ carbon dioxide atmosphere as an oxidizer could power a Venus lander for up five days (24 h, Earth day) with 185 kg of fuel, delivering 14 kWth thermal energy continuously. Even greater durations are possible if lower power missions are considered. The potential performances of a Li-CO2 powered Stirling engine and sulfur-sodium batteries were compared. It was found that sulfur sodium batteries would require about 1.75-2.5 times more mass to provide 1 kW of power output for mission durations of five to ten days, respectively. A lithium combustion power system with a sulfur-hexafluoride oxidizer could power a Europa lander at 94W with a Stirling engine for up to twenty days with 43 kg of reactants mass. Lithium-combustion activated Stirling engines and TEG arrays were compared with batteries to meet this power and mission duration requirement. It was found that batteries would require less mass than either lithium fueled system. However, for mission durations longer than twenty-six days the Stirling engine power system may require less total mass than batteries. Future work will include laboratory-based experimental studies to validate results and improve heat transfer closure models.
机译:金星表面上持续时间最长的任务是在刚刚超过2小时的时间里的Venera 13。此时间限制是由于电池寿命有限和工艺热管理方面的挑战。已经提出了一种基于锂燃烧的动力系统,以增加金星和其他极端环境目标的着陆任务持续时间。本文提出了概念性锂燃烧动力系统的新的详细的热力学和热传递模型。研究结果用于指定潜在任务的工程要求。结果表明,使用原位二氧化碳气氛作为氧化剂的锂燃烧动力系统可以用185千克燃料为金星着陆器供电长达5天(24天,地球日),连续提供14 kWth热能。如果考虑使用较低功率的任务,则更长的持续时间是可能的。比较了使用Li-CO2动力的斯特林发动机和硫钠电池的潜在性能。已发现,硫钠电池需要的质量大约为1.75-2.5倍,才能在5到10天的任务期间分别提供1 kW的功率输出。带有六氟化硫氧化剂的锂燃烧动力系统可以使用斯特林发动机以94W的功率向Europa着陆器供电,反应物质量为43 kg,长达20天。将锂燃烧激活的斯特林发动机和TEG阵列与电池进行比较,以满足此功率和任务持续时间的要求。已经发现,与任何一种以锂为燃料的系统相比,电池所需的质量都较小。但是,对于任务持续时间超过26天的斯特林发动机动力系统,其总质量可能比电池少。未来的工作将包括基于实验室的实验研究,以验证结果并改善传热封闭模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号