首页> 美国卫生研究院文献>other >Mutations of Photosystem II D1 Protein That Empower Efficient Phenotypes of Chlamydomonas reinhardtii under Extreme Environment in Space
【2h】

Mutations of Photosystem II D1 Protein That Empower Efficient Phenotypes of Chlamydomonas reinhardtii under Extreme Environment in Space

机译:在极端的空间环境中赋予莱茵衣藻高效表型的光系统II D1蛋白突变。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.
机译:太空任务使人们能够测试微生物,动植物如何应对太空中的陆地,复杂和危险环境。人们认为光合生物相对更容易产生微重力,弱磁场和宇宙辐射,因为含氧光合作用与光能的捕获和转化成化学能密切相关,这一过程已经适应了地球上相对简单和封闭的环境。为了研究空间环境对光合作用基本过程的直接影响,我们将被广泛用作光合生物模型的单细胞绿藻莱茵衣藻(Chlamydomonas reinhardtii)送入低地球轨道的空间工程和突变菌株。藻类突变体在QB结合袋附近的关键光系统II(PSII)反应中心D1蛋白的功能重要区域以及在析氧复合物Tyr-161(YZ)电子受体周围的环境中包含特定的氨基酸取代。使用PSII光化学的实时测量结果,我们发现在太空飞行中,控制菌株和两个D1突变体(A250L和V160A)在执行PSII活性方面效率低下,另外两个D1突变体I163N和A251C则进行了有效的光合作用,并在返回地球后积极成长。模仿地球上宇宙射线的中子辐照分量产生了相似的结果。在地面上进行的I163N和A251C D1突变体实验表明,它们能够更好地调节PSII激发压力,并具有更高的再氧化一级电子受体QA -状态的能力。这些结果突出了D1构象在空间中光合作用和氧气产生方面的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号