首页> 外文期刊>Acta astronautica >Novel closed-loop approaches for precise relative navigation of widely separated GPS receivers in LEO
【24h】

Novel closed-loop approaches for precise relative navigation of widely separated GPS receivers in LEO

机译:LEO中广泛分离的GPS接收机精确相对导航的新型闭环方法

获取原文
获取原文并翻译 | 示例
       

摘要

This paper deals with the relative navigation of a formation of two spacecrafts separated by hundreds of kilometers based on processing dual-frequency differential carrier-phase GPS measurements. Specific requirements of the considered application are high relative positioning accuracy and real-time on board implementation. These can be conflicting requirements. Indeed, if on one hand high accuracy can be achieved by exploiting the integer nature of double-difference carrier-phase ambiguities, on the other hand the presence of large ephemeris errors and differential ionospheric delays makes the integer ambiguities determination challenging. Closed-loop schemes, which update the relative position estimates of a dynamic filter with feedback from integer ambiguities fixing algorithms, are customarily employed in these cases. This paper further elaborates such approaches, proposing novel closed loop techniques aimed at overcoming some of the limitations of traditional algorithms. They extend techniques developed for spaceborne long baseline relative positioning by making use of an on-the-fly ambiguity resolution technique especially developed for the applications of interest. Such techniques blend together ionospheric delay compensation techniques, nonlinear models of relative spacecraft dynamics, and partial integer validation techniques. The approaches are validated using flight data from the Gravity Recovery and Climate Experiment (GRACE) mission. Performance is compared to that of the traditional closed-loop scheme analyzing the capability of each scheme to maximize the percentage of correctly fixed integer ambiguities as well as the relative positioning accuracy. Results show that the proposed approach substantially improves performance of the traditional approaches. More specifically, centimeter-level root-mean square relative positioning is feasible for spacecraft separations of more than 260 km, and an integer ambiguity fixing performance as high as 98% is achieved in a 1-day long dataset. Results also show that approaches exploiting ionospheric delay models are more robust and precise of approaches relying on ionospheric-delay removal techniques.
机译:本文基于对双频差分载波相位GPS测量的处理,研究了相距数百公里的两个航天器的编队的相对导航。所考虑的应用程序的特定要求是较高的相对定位精度和实时车载实施。这些可能是相互矛盾的要求。实际上,如果一方面可以通过利用双差载波相位模糊度的整数特性来实现高精度,另一方面,大的星历误差和差分电离层延迟的存在使整数模糊度的确定具有挑战性。通常在这些情况下采用闭环方案,该方案使用来自整数模糊度固定算法的反馈来更新动态滤波器的相对位置估计。本文进一步阐述了这些方法,提出了旨在克服传统算法某些局限性的新颖闭环技术。他们利用专门为感兴趣的应用开发的动态模糊度解析技术,扩展了为航天长基线相对定位开发的技术。这些技术将电离层延迟补偿技术,相对航天器动力学的非线性模型以及部分整数验证技术融合在一起。使用重力恢复和气候实验(GRACE)任务的飞行数据验证了这些方法。将性能与传统闭环方案的性能进行比较,分析每种方案的能力,以使正确固定的整数模糊度的百分比以及相对定位精度最大化。结果表明,所提出的方法大大提高了传统方法的性能。更具体地说,厘米级的均方根相对定位对于超过260 km的航天器间隔是可行的,并且在长达1天的数据集中实现了高达98%的整数模糊度固定性能。结果还表明,利用电离层延迟模型的方法比依靠电离层延迟消除技术的方法更鲁棒和更精确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号