首页> 外文期刊>Acta astronautica >Attitude dynamics and control of a spacecraft like a robotic manipulator when implementing on-orbit servicing
【24h】

Attitude dynamics and control of a spacecraft like a robotic manipulator when implementing on-orbit servicing

机译:实施在轨维修时,像机器人一样的航天器的姿态动力学和控制

获取原文
获取原文并翻译 | 示例
           

摘要

In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.
机译:在空间中,机械手的工作空间以微重力环境为特征。在这种环境下,航天器会漂浮,其旋转/平移运动可能会受到任何内部和外部干扰的激发。整个系统,即航天器和相关的机器人操纵器,漂浮并且对与操纵器操作有关的任何反作用力和转矩敏感。在这种意义上,机器人所做的努力可能会导致围绕系统质心的扭矩,并且还会导致改变其平移运动的力。本文分析了机器人机械手动力学对姿态运动的影响以及相关的控制努力,以保持机械臂在操作过程中的姿态稳定。动力学分析在会合对接/停泊操作的紧密相近阶段进行。在这种情况下,用于平移和姿态相对运动的线性系统方程式是合适的。针对相对的平移和旋转运动实施了计算机模拟。使用MatLab软件通过计算机模拟了运动方程。 LQR和PID控制律分别用于线性和非线性控制,目的是在机器人投入使用和停用时保持姿态稳定。重力梯度和剩磁转矩被认为是外部干扰。分析了机械手投入使用和退出使用时的控制效果。当机械手投入使用时,控制定律可以使系统稳定并具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号