...
首页> 外文期刊>Acta astronautica >Investigate the shock focusing under a single vortex disturbance using 2D Saint-Venant equations with a shock-capturing scheme
【24h】

Investigate the shock focusing under a single vortex disturbance using 2D Saint-Venant equations with a shock-capturing scheme

机译:使用2D Saint-Venant方程和震荡捕获方案研究单个涡旋扰动下的震荡聚焦

获取原文
获取原文并翻译 | 示例
           

摘要

In order to characterize the flow structure and the effect of acoustic waves caused by the shock-vortex interaction on the performance of the shock focusing, the incident plane shock wave with a single disturbance vortex focusing in a parabolic cavity is simulated systematically through solving the two-dimensional, unsteady Saint-Venant equations with the two order HLL scheme of Riemann solvers. The simulations show that the dilatation effect to be dominant in the net vorticity generation, while the baroclinic effect is dominate in the absence of initial vortex disturbance. Moreover, the simulations show that the time evolution of maximum focusing pressure with initial vortex is more complicate than that without initial vortex, which has a lot of relevance with the presence of quadrupolar acoustic wave structure induced by shock-vortex interaction and its propagation in the cavity. Among shock and other disturbance parameters, the shock Mach number, vortex Mach number and the shape of parabolic reflector proved to play a critical role in the focusing of shock waves and the strength of viscous dissipation, which in turn govern the evolution of maximum focusing pressure due to the gas dynamic focus, the change in dissipation rate and the coincidence of motion disturbance vortex with aerodynamic focus point.
机译:为了表征激波涡旋相互作用的流动结构和声波对激波聚焦性能的影响,通过求解两者,系统地模拟了抛物腔内具有单个扰动涡旋聚焦的入射平面激波。 Riemann求解器的二阶HLL格式的三维非定常Saint-Venant方程。仿真表明,膨胀效应在净涡旋产生中占主导地位,而斜压效应在没有初始涡旋扰动的情况下占主导地位。此外,仿真结果表明,具有初始涡流的最大聚焦压力的时间演化要比没有初始涡流的情况大得多,这与冲击涡相互作用引起的四极声波结构的存在及其在大气中的传播有很大关系。腔。在冲击和其他扰动参数中,证明了冲击马赫数,涡旋马赫数和抛物线形反射镜的形状在冲击波聚焦和粘性耗散强度方面起着至关重要的作用,从而控制了最大聚焦压力的变化。由于气体动力聚焦,耗散率的变化以及运动扰动涡旋与空气动力焦点的重合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号