首页> 外文期刊>Astrobiology >Alpha-Oxo Acids Assisted Transformation of FeS to Fe3S4 at Low Temperature: Implications for Abiotic, Biotic, and Prebiotic Mineralization
【24h】

Alpha-Oxo Acids Assisted Transformation of FeS to Fe3S4 at Low Temperature: Implications for Abiotic, Biotic, and Prebiotic Mineralization

机译:低温下的α-含氧酸辅助FeS转化为Fe3S4:对非生物,生物和益生元矿化的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The mineral greigite (Fe3S4) distributes widely in anoxic marine and lake sedimentary systems, with important implications for magnetostratigraphy and paleomagnetism. In living organisms, magnetotactic bacteria can synthesize greigite grains with regular sizes and morphologies. The cubic Fe3S4 structure also occurs as an integral constituent and active center in a family of iron-sulfur proteins in all life-forms on Earth. This basic biochemistry shared by all organisms implies that the Fe3S4 structure might have evolved in the first protocell. Therefore, greigite is of general interest in geochemistry, geophysics, biomineralogy, and origin-of-life sciences. However, the growth of thermodynamically metastable Fe3S4 crystals often requires strictly defined conditions because both Fe and S show variable valences and it is hard to tune their valence fluctuation. Here, we show that freshly precipitated FeS can be selectively oxidized to form greigite in the presence of -oxo acids, even at room temperature. Based on a brief overview of the experimental findings, a metal-organic complex intermediate model has been put forward and discussed for the discriminative chemical transformation. The results not only provide a possible pathway for the abiotic formation of greigite in nature but also may help explain the biotic mineralization of greigite in magnetotactic bacteria. Moreover, in the context of prebiotic evolution, along with the synergic evolution between greigite and -oxo acids, Fe3S4 might have been sequestered by primordial peptides, and the whole finally evolved into the first iron-sulfur protein.
机译:镁铁矿(Fe3S4)广泛分布在缺氧的海洋和湖泊沉积系统中,对地磁地层学和古磁性作用具有重要意义。在活生物体中,趋磁细菌可以合成规则大小和形态的方铅矿晶粒。立方Fe3S4结构还作为地球上所有生命形式的铁硫蛋白家族中不可或缺的组成部分和活性中心出现。所有生物都具有这种基本的生化特征,这意味着Fe3S4结构可能已在第一个原生细胞中进化。因此,钙铁矿在地球化学,地球物理学,生物矿物学和生命起源科学中受到广泛关注。然而,由于Fe和S均显示出可变的化合价且难以调节其化合价波动,因此热力学上稳定的Fe 3 S 4晶体的生长通常需要严格限定的条件。在这里,我们表明,即使在室温下,在存在-氧代酸的情况下,新鲜沉淀的FeS也可以被选择性地氧化以形成钙铁矿。在对实验结果进行简要概述的基础上,提出了金属有机复合中间模型,并进行了鉴别化学转化的讨论。该结果不仅为自然界中钙铁矿的非生物形成提供了可能的途径,而且可以帮助解释趋磁细菌中钙铁矿的生物矿化。此外,在益生元进化的背景下,连同钙铁矿和-oxo酸之间的协同进化,Fe3S4可能被原始肽螯合,最终整体进化为第一个铁硫蛋白。

著录项

  • 来源
    《Astrobiology》 |2015年第12期|1043-1051|共9页
  • 作者单位

    Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Harbin 150086, Peoples R China;

    Harbin Inst Technol, Dept Phys, Harbin 150086, Peoples R China;

    Harbin Inst Technol, Dept Phys, Harbin 150086, Peoples R China;

    Harbin Inst Technol, Dept Phys, Harbin 150086, Peoples R China;

    Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130023, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Greigite; Mineralization; alpha-Oxo acid; Magnetosome; Iron-sulfur protein; Prebiotic evolution;

    机译:钙铁矿;矿化;α-氧代酸;菱镁矿;铁硫蛋白;益生元演化;
  • 入库时间 2022-08-17 13:06:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号