首页> 外文期刊>ASHRAE Transactions >Melting of PCM with Nanoparticles in a Triplex-Tube Thermal Energy Storage System
【24h】

Melting of PCM with Nanoparticles in a Triplex-Tube Thermal Energy Storage System

机译:三重管热能存储系统中PCM与纳米粒子的熔融

获取原文
获取原文并翻译 | 示例
       

摘要

Environmental concerns and limited energy supply today make energy storage very important, especially in solar energy utilization. The latent heat storage method has the advantage of storing a large amount of energy in a relatively small volume. Achieving thermal energy storage with latent heat application using phase-change materials (PCMs) involves the heat of fusion at the solid-liquid phase transition. The problem with today's PCMs is that their very low thermal conductivity values severely limit their energy storage capability. This also makes the melting and solidification times too long for meeting the desired results. Investigations to solve this problem include improved design configurations and addition of nanoparticles to the PCM to enhance the thermal conductivity. This study is on the effects of nanoparticle dispersion in the melting of a PCM in a triplex-tube heat exchanger heated under constant surface-temperature conditions. The governing equations for the configuration and process were discret-ized via the finite volume method and solved numerically. The developed model, which was validated, shows good agreement when compared to a previous related experimental study. The computations were performed for nanoparticle volume fractions ranging from 1% to 3%. The results, shown in the form of isotherms and contours of the solid-liquid interface over different periods of charging time, are presented and discussed. The results show an enhancement in the melting rate with doping nanoparticles of different volumetric concentrations. The results also show melting time savings of 17% as a result of adding nanoparticles to the PCM for a nanoparticle volume fraction of] %. Higher-volume fractions were found to not result in significant melting time savings for the process in the triplex-tube heat exchanger.
机译:今天,对环境的关注和有限的能源供应使能量存储非常重要,尤其是在太阳能利用方面。潜热存储方法具有以相对较小的体积存储大量能量的优点。通过使用相变材料(PCM)进行潜热施加来实现热能存储涉及固-液相转变中的熔化热。如今的PCM的问题在于其非常低的导热系数严重限制了其能量存储能力。这也使得熔化和固化时间太长而不能满足期望的结果。解决该问题的研究包括改进设计配置以及向PCM添加纳米颗粒以增强导热性。这项研究是关于在恒定表面温度条件下加热的三重管式换热器中PCM熔化过程中纳米颗粒分散的影响。通过有限体积法离散化了结构和过程的控制方程,并进行了数值求解。与以前的相关实验研究相比,已验证的已开发模型显示出良好的一致性。对范围为1%至3%的纳米颗粒体积分数进行了计算。以等温线和固-液界面等高线形式表示了不同充电时间段的结果,并进行了讨论。结果表明,使用不同体积浓度的掺杂纳米颗粒可提高熔融速率。结果还表明,由于将纳米颗粒添加到PCM中,纳米颗粒的体积分数为[%],因此节省了17%的熔化时间。发现在三层管式热交换器中,较大体积的馏分不会为该工艺节省大量的熔融时间。

著录项

  • 来源
    《ASHRAE Transactions》 |2016年第2期|215-224|共10页
  • 作者单位

    Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL;

    Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号