首页> 外文期刊>ASHRAE Transactions >A New Model for Two-Phase Flow Boiling Heat Transfer of Refrigerant and Nanolubricant Mixtures in Smooth Tubes
【24h】

A New Model for Two-Phase Flow Boiling Heat Transfer of Refrigerant and Nanolubricant Mixtures in Smooth Tubes

机译:光滑管中制冷剂和纳米磺酸混合物两相流沸热传热的新模型

获取原文
获取原文并翻译 | 示例
           

摘要

Nanolubricants, that is, nanoparticks dispersed in the non-volatile component of a refrigerant and oil mixture, have shown potential to augment heat transfer in the evaporators of refrigeration systems. The two-phase flow boiling heat transfer coefficient superposition models, available in the literature, used Dittus-Boelter or Gnielinski correlations to predict convective heat transfer rates, and Forster-Zuber or Cooper correlations to estimate the nucleate boiling heat transfer rates. These correlations do not account for the presence of nanoparticks in the two-phase flow and cannot predict the heat transfer enhancements, or sometimes degradation, observed during flow boiling experiments of refrigerant and nanoparticle laden lubricant mixtures. A new comprehensive model was developed by modifying and integrating existing convective heat transfer models originally developed for nanofluids and pool boiling models for nanolubricants. The newly developed model accounts for the interactions of nanoparticks with the base fluids in terms of increasing the heat transfer by transfer of momentum from the nanoparticks to the bubbles, and introducing slip velocity effects at the interface between the nanoparticks and the base fluid. Experimental heat transfer data of the saturated two-phase flow boiling of R410A with two nanolubricants in a smooth copper tube were used to validate the new superposition model. The two nanolubricants had non-spherical ZnO nanoparticks and spherical y-Al2O3 nanoparticks dispersed in Polyolester (POE) lubricant. The model results followed the data trends and confirmed that the presence of low concentrations of nanoparticks in the turbulent flow increased the laminar sublayer thickness. This phenomenon was responsible for the observed decrease of the two-phase flow evaporative heat transfer. However, the model predicted potential enhancements in heat transfer when constraining the nanoparticks within the laminar sublayer of the flow.
机译:纳米磺酸剂,即分散在制冷剂和油混合物的非挥发性组分中的纳米粒子,已经示出了增强制冷系统蒸发器中的传热的可能性。两相流沸腾的传热系数叠加模型,在文献中提供,使用DTTUS-BEELTER或GNIELINSKI相关性,以预测对流传热速率,以及FORSTER-ZUBER或COOPOR相关性以估计核心沸腾的传热速率。这些相关性不会占两相流中的纳米粒子的存在,并且不能预测在制冷剂和纳米粒子载润滑剂混合物的流沸实验期间观察到的热传递增强或有时降解。通过修改和整合最初为纳米流体和池沸腾模型为纳米糖尿料开发的现有对流传热模型来开发了一种新的综合模型。新开发的模型在通过将动量从纳米粒子转移到气泡的转移,并在纳米粒子和基础液之间引入界面的界面引入滑移速度效应来增加纳米粒子与基础流体的相互作用。使用两个纳米磺酸在光滑的铜管中的R410A饱和两相流沸腾的实验传热数据用于验证新的叠加模型。两种纳米磺酸剂具有非球形ZnO纳米粒子和球形Y-Al2O3纳米粒子,分散在聚酰胺酯(PoE)润滑剂中。模型结果遵循数据趋势并确认在湍流中存在低浓度的纳米颗粒增加了层状子层厚度。这种现象对观察到的两相流蒸发热转移的降低负责。然而,当在流动的层状子层内限制纳米粒子时,模型预测热传递的潜在增强。

著录项

  • 来源
    《ASHRAE Transactions》 |2020年第1期|144-153|共10页
  • 作者单位

    Department of Mechanical Engineering Auburn University Auburn Alabama;

    Department of Mechanical Engineering Auburn University Auburn Alabama;

    Department of Mechanical Engineering Auburn University Auburn Alabama;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号