首页> 外文期刊>Archive of Applied Mechanics >Numerical simulation of flow-induced stresses in mold filling process using a three-dimensional two-phase flow model
【24h】

Numerical simulation of flow-induced stresses in mold filling process using a three-dimensional two-phase flow model

机译:三维两相流模型对充型过程中流致应力的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The flow-induced stresses which arise during the filling stage have significant influences on the mechanical and optical properties of injection-molded products. The prediction of flow-induced stresses in mold-filling process is a challenging problem, which includes viscoelastic polymer melt free surface flow. Thus, this paper presents a three-dimensional (3D) non-isothermal two-phase flow model to quantitative predict the flow-induced stresses in polymer mold-filling process based on the XPP model. In this model, the governing equations for gas and viscoelastic melt are united into a system namely the generalized Navier-Stokes equations. In order to improve the stability of the numerical method in 3D, an enhanced treatment of stress solid boundaries is proposed. The stresses on solid boundaries are calculated using an effective second-order Runge-Kutta method. The model is successfully solved by using the finite volume method, and the melt front is accurately captured by level set method. The validity of the method is verified by two benchmark problems. Then the mold-filling process of a rectangular plate is studied numerically, obtaining the evolutions of flow-induced stresses at different levels along the gap-wise direction, which can not be simulated by 2.5D model. The predicted flow-induced birefringence is in agreement with the experimental result reported in the literature. Furthermore, the effects of injection velocity and some model parameters of XPP model on flow-induced stresses are numerically predicted. The numerical results show that the 3D simulation technology can effectively predict the flow-induced stresses and birefringence in non-isothermal viscoelastic polymer mold-filling process. The results can provide the theory foundation for improving the properties of products in actual production processes.
机译:在填充阶段出现的由流动引起的应力对注塑产品的机械和光学性能有重大影响。模具填充过程中流致应力的预测是一个具有挑战性的问题,其中包括粘弹性聚合物无熔体的表面流动。因此,本文提出了一种基于XPP模型的三维(3D)非等温两相流模型,用于定量预测聚合物注模过程中的流致应力。在该模型中,气体和粘弹性熔体的控制方程式被组合成一个系统,即广义的Navier-Stokes方程式。为了提高3D数值方法的稳定性,提出了一种对应力固体边界的增强处理方法。使用有效的二阶Runge-Kutta方法计算固体边界上的应力。使用有限体积法成功地解决了该模型,并通过液位设定法准确地捕获了熔体前沿。该方法的有效性由两个基准问题验证。然后对矩形板的注模过程进行了数值研究,获得了沿间隙方向不同水平的流致应力的演化,这是2.5D模型无法模拟的。预测的流致双折射与文献报道的实验结果一致。此外,数值预测了注射速度和XPP模型的一些模型参数对流致应力的影响。数值结果表明,3D仿真技术可以有效地预测非等温粘弹性聚合物充模过程中的流动引起的应力和双折射。研究结果可为提高实际生产过程中产品的性能提供理论依据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号