首页> 外文期刊>Applied Surface Science >Bridge sulfur vacancies in MoS_2 catalyst for reverse water gas shift: A first-principles study
【24h】

Bridge sulfur vacancies in MoS_2 catalyst for reverse water gas shift: A first-principles study

机译:MOS_2催化剂的桥梁硫磺空间逆向水煤气变换:第一原理研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Vacancies, typically exist in various types and morphologies on the surfaces of transition metal compound catalysts, have been shown to play an important role in many catalytic reactions. However, identifying the optimal type and morphology of vacancy and the key factors that control its performance remains a significant challenge. By density functional theory calculations and microkinetic modeling, we show that compared to various threefold S vacancy morphologies on the basal plane, the lower coordination number at the bridge S vacancy of Mo edge on MoS2 tunes the relative adsorption strength of key intermediates (such as O relative to OH). This not only increases CO2 hydrogenation rate by 7-11 orders of magnitude, but also leads to clearly distinct mechanism (associative & redox). The large destabilization of O and low H coverage on the Mo edge also hinder C-O scission and hydrogenation (give CH4 and CH3OH) relative to CO desorption, leading to almost 100% CO selectivity. The inexpensive MoS2 catalyst provides an alternative to the traditional noble metal catalysts for reverse water gas shift, and the coordination number of vacancy modulated catalytic performance illustrates a promising way to design transition metal compound catalysts for other important reactions of technological interest.
机译:已经证明,在过渡金属化合物催化剂表面上的各种类型和形态中的空位,通常存在于许多催化反应中起重要作用。然而,确定空缺的最佳类型和形态以及控制其性能的关键因素仍然是一个重大挑战。通过密度函数理论计算和微蓄力建模,我们表明,与基础平面上的各种三倍的空位形态相比,MOS2上的MO边缘的桥梁空位的较低的协调数调谐关键中间体的相对吸附强度(如o相对于哦)。这不仅将二氧化碳氢化率提高到7-11级数量级,而且还导致明显不同的机制(联想和氧化还原)。 o和低H覆盖对Mo Edge的大的破坏化也阻碍了相对于CO解吸的C-O Sconcly和氢化(给CH 4和CH 3 OH),导致几乎100%CO选择性。廉价的MOS2催化剂提供了传统贵金属催化剂的替代用于反向水气体换气,并且空位调节催化性能的配位数示出了设计过渡金属化合物催化剂,用于技术兴趣的其他重要反应的过渡金属化合物催化剂。

著录项

  • 来源
    《Applied Surface Science》 |2021年第30期|149925.1-149925.13|共13页
  • 作者单位

    Dongguan Univ Technol Sch Chem Engn & Energy Technol Dongguan 523808 Peoples R China;

    Yanshan Univ Sch Environm & Chem Engn Key Lab Appl Chem 438 Hebei Ave Qinhuangdao 066004 Hebei Peoples R China;

    Univ Sci & Technol China CAS Ctr Excellence Nanosci Sch Chem & Mat Sci iChEM Dept Chem Phys Hefei Natl Lab Phys Sci Microscale Hefei 230026 Peoples R China;

    Shenzhen Univ Coll Phys & Optoelect Engn Shenzhen Key Lab Adv Thin Films & Applicat Shenzhen 518060 Peoples R China;

    Univ Sci & Technol China CAS Ctr Excellence Nanosci Sch Chem & Mat Sci iChEM Dept Chem Phys Hefei Natl Lab Phys Sci Microscale Hefei 230026 Peoples R China;

    Swinburne Univ Technol Ctr Translat Atomat Hawthorn Vic 3122 Australia;

    Dongguan Univ Technol Sch Chem Engn & Energy Technol Dongguan 523808 Peoples R China;

    Dongguan Univ Technol Sch Chem Engn & Energy Technol Dongguan 523808 Peoples R China;

    Univ Sci & Technol China CAS Ctr Excellence Nanosci Sch Chem & Mat Sci iChEM Dept Chem Phys Hefei Natl Lab Phys Sci Microscale Hefei 230026 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    S vacancy; MoS2; CO2 hydrogenation; Reverse water gas shift; DFT calculations;

    机译:S空位;MOS2;CO2氢化;反向水煤气变换;DFT计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号