...
首页> 外文期刊>Applied Surface Science >Microfluidic-integrated graphene optical sensors for real-time and ultra-low flow velocity detection
【24h】

Microfluidic-integrated graphene optical sensors for real-time and ultra-low flow velocity detection

机译:微流体 - 集成石墨烯光学传感器,用于实时和超低流速检测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As microfluidic technology continues to mature, many techniques are being developed to monitor the flow of microfluidics. However, achieving breakthroughs in the real-time detection of ultra-low flow velocity and nonconductive liquid in microfluidic environments remains a major challenge. Here, microfluidic-integrated graphene optical sensorswith a sensitivity of 4.65 x 10(5) mV.s.m(-1) and a detection limit of 4.9 x 10(-5) m.s(-1) were designed to address these challenges. We reported our efforts to quantify the impact of ultra-low flow velocity driven by ultra-small levels of pressure. A flow velocity of 3.7 x 10(-4) m.s(-1) was detected with a signal-to-noise ratio of approximately 7.5. A high-quality graphene layer that was directly grown on glass by an improved lowpressure chemical vapor deposition method and provided several advantages, including controllable thickness, high uniformity, high stability, and corrosion resistance. Graphene also has an excellent polarization-dependent effect. It was extremely sensitive to pressure-driven microfluidic flow because of the interaction between polarization light and the quartz glass/graphene film/medium multilayer-coupling structure, which fed back the signals in real-time. This novel sensor represents a breakthrough in the ultra-low level detection of the flow velocity of non-conductive microfluidics. We expect this sensor to have a broad array of applications in the field of microfluid velocity measurement.
机译:由于微流体技术继续成熟,正在开发许多技术来监测微流体的流量。然而,在微流体环境中的超低流速和非导电液的实时检测中实现突破仍然是一个重大挑战。这里,旨在解决这些挑战4.65×10(5)mv.s.m(-1)的敏感性为4.65×10(5)mv.s.m(-1)和4.9×10(-5)米(-1)的敏感性的微流体集成的石墨烯光学传感器。我们报告了我们努力量化超小型压力驱动的超低流速的影响。检测到3.7×10(-4)M.S(-1)的流速,信号到噪声比约为7.5。通过改进的低压化学气相沉积方法直接在玻璃上直接生长的高质量石墨烯层,并提供了几种优点,包括可控厚度,高均匀性,高稳定性和耐腐蚀性。石墨烯还具有出色的极化依赖性效果。由于偏振光和石英玻璃/石墨烯薄膜/介质多层耦合结构之间的相互作用,对压力驱动的微流体流动非常敏感,这是实时向信号反馈信号。该新型传感器代表了非导电微流体的流速的超低水平检测中的突破。我们希望该传感器在微流体速度测量领域具有广泛的应用。

著录项

  • 来源
    《Applied Surface Science》 |2021年第15期|148232.1-148232.7|共7页
  • 作者单位

    Shandong Univ Technol Sch Phys & Optoelect Engn Zibo 255049 Peoples R China;

    Southwest Jiaotong Univ Sch Phys Sci & Technol Chengdu 614202 Sichuan Peoples R China;

    Shandong Univ Technol Sch Phys & Optoelect Engn Zibo 255049 Peoples R China;

    Shandong Univ Technol Sch Phys & Optoelect Engn Zibo 255049 Peoples R China;

    Chinese Acad Sci Changchun Inst Opt Fine Mech & Phys Guo China US Photon Lab State Key Lab Appl Opt Changchun Peoples R China;

    Shandong Univ Technol Sch Phys & Optoelect Engn Zibo 255049 Peoples R China;

    Shandong Univ Technol Sch Phys & Optoelect Engn Zibo 255049 Peoples R China;

    Shandong Univ Technol Sch Phys & Optoelect Engn Zibo 255049 Peoples R China;

    Shandong Univ Technol Sch Phys & Optoelect Engn Zibo 255049 Peoples R China;

    Shandong Univ Technol Sch Phys & Optoelect Engn Zibo 255049 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microfluidics; Graphene optical sensors; Polarization-dependent effect; Flow velocity;

    机译:微流体;石墨烯光学传感器;偏振依赖性效果;流速;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号