...
首页> 外文期刊>Applied Surface Science >High-efficiency all-solid-state Z-scheme Ag_3PO_4/g-C_3N_4/MoSe_2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination
【24h】

High-efficiency all-solid-state Z-scheme Ag_3PO_4/g-C_3N_4/MoSe_2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination

机译:高效全固态Z样杆AG_3PO_4 / G-C_3N_4 / MOSE_2光催化剂,具有促进可见光光催化性能的抗生素消除

获取原文
获取原文并翻译 | 示例
           

摘要

Inspired by plant photosynthesis, the construction of all-solid-state photocatalyst with Z-scheme structure has been proven to a promising approach for boosting the efficiency of charge transfer and electron-hole separation. Herein, novel ternary all-solid-state photocatalyst Ag3PO4/g-C3N4/MoSe(2)composing of Ag3PO4 nanoparticles and MoSe(2 )nanosheets loaded with sheet-like g-C3N4 was first constructed by an in situ synthetic route. Furthermore, Ag3PO4/g-C3N4/MoSe2 photocatalyst showed greater visible-light-driven photodegradation activity toward CIP and TC than pristine Ag3PO4 and g-C3N4 due to the construction of Ag3PO4/g-C3N4/MoSe(2)Z-scheme photocatalystic system. Furthermore, a probable visible-light-driven photodegradation mechanism of all-solid-state Z-scheme system was discussed clearly, which was ascribed to the major active species of photoinduced holes (h(+)) and superoxide radicals (center dot O-2(-)) by free radical trapping and ESR experiments. Particularly, MoSe(2)as a noble-metal free mediator not only can promote the separation efficiency of photoinduced pairs, but also accumulate more light energy in degradation process. Additionally, this solid-state photocatalysis can offer a new perception for the design and application of novel Z-scheme structure modified with MoSe2 as an electron-transfer mediator.
机译:由植物光合作用的启发,已证明具有Z形型结构的全固态光催化剂的构建,以提高电荷转移效率和电子孔分离的有希望的方法。这里,首先通过原位合成途径构建Ag3PO4纳米颗粒和装载用片状G-C3N4的Ag3PO4纳米颗粒和MOSE(2)纳米液组成的新型三元全固态光催化剂Ag3PO4 / G-C3N4 / MOSE(2)组成。此外,Ag3PO4 / G-C3N4 / MOSE2光催化剂由于Ag3PO4 / G-C3N4 / MOSE(2)Z方案光催化系统的构建而言,朝向CIP和TC比原始Ag3PO4和G-C3N4更大的可见光光降解活性。 。此外,清楚地讨论了全固态Z-Scheme System的可能的可见光光降光降解机制,其归因于光致孔的主要活性物质(H(+​​))和超氧化物自由基(中心点O- 2( - ))通过自由基捕获和ESR实验。特别是,作为贵金属的游离剂的MOSE(2)不仅可以促进光诱导对的分离效率,而且在降解过程中累积更轻微的能量。另外,这种固态的光催化可以为用MOSE2改性的新型Z方案结构的设计和应用提供新的感知,作为电子转移介体。

著录项

  • 来源
    《Applied Surface Science》 |2020年第15期|147234.1-147234.10|共10页
  • 作者单位

    Jiangsu Univ Fac Sci Sch Mat Sci & Engn Emergency Med Ctr Affiliated Hosp Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Fac Sci Sch Mat Sci & Engn Emergency Med Ctr Affiliated Hosp Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Fac Sci Sch Mat Sci & Engn Emergency Med Ctr Affiliated Hosp Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Fac Sci Sch Mat Sci & Engn Emergency Med Ctr Affiliated Hosp Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Fac Sci Sch Mat Sci & Engn Emergency Med Ctr Affiliated Hosp Zhenjiang 212013 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ag3PO4; g-C3N4; MoSe2; All-solid-state; Z-scheme photocatalystic system;

    机译:ag3po4;g-c3n4;mose2;全固态;z方案光催化系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号