...
首页> 外文期刊>Applied Surface Science >Payload delivery of anticancer drug Tegafur with the assistance of graphene oxide nanosheet during biomembrane penetration: Molecular dynamics simulation survey
【24h】

Payload delivery of anticancer drug Tegafur with the assistance of graphene oxide nanosheet during biomembrane penetration: Molecular dynamics simulation survey

机译:抗癌药物TEGAFUR的有效载荷递送在Biomembranne渗透期间的石墨烯氧化物纳米液:分子动力学模拟调查

获取原文
获取原文并翻译 | 示例

摘要

It is known that the interaction of drug molecules with biomembranes affects their pharmacokinetic parameters. Biological membranes as physical barrier limit diffusion of different types of molecules across the membranes. For that, the drug delivery systems (DDS) are used to increase drug membrane permeability. In this work, the molecular dynamics (MD) simulation is performed to evaluate the mechanism of graphene oxide nanosheet (GO) as Tegafur (TG) drug delivery cargo across the cell membrane. MD simulation shows the spontaneously attraction of GO to the cell membrane during the initial time of simulation. It is found that the complete parallel orientation of nanosheet and further partially its insertion into the membrane is facilitated by increasing the hydrogen bonds (HBs) formation between the oxygen-containing groups of GO and lipid bilayer throughout the simulation trajectory. Molecular dynamics simulation reveals slow release of TG drug molecules from the graphene oxide nanosheet surface near the cell membrane, which highlights the efficiency of GO as a good carrier for the controlled release of Tegafur drug. This study reinforces the consideration of graphene oxide nanosheet for delivering an elevated therapeutic dose directly on the cancer cell target in biomedical applications.
机译:众所周知,药物分子与生物膜的相互作用影响其药代动力学参数。生物膜作为膜上不同类型分子的物理屏障极限扩散。为此,药物递送系统(DDS)用于增加药物膜渗透性。在这项工作中,进行分子动力学(MD)模拟以评估石墨烯纳米液(GO)作为TEGAFUR(TG)药物输送货物在细胞膜上的机制。 MD仿真显示在初始模拟期间转到电池膜的自发吸引力。发现纳米片的完全平行取向并通过在整个模拟轨迹中增加含氧组和脂质双层之间的含氧基团的氢键(HBS)形成,促进其进入膜中的插入。分子动力学模拟揭示了从细胞膜附近的石墨烯氧化物纳米片表面释放的Tg药物分子的缓慢释放,这突出了作为泰格劳药的控释的好载体的效率。该研究强化了石墨烯氧化物纳米片的考虑,用于在生物医学应用中直接递送升高的治疗剂量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号