首页> 外文期刊>Applied Surface Science >Insights on the impact of doping levels in oxygen-doped gC_3N_4 and its effects on photocatalytic activity
【24h】

Insights on the impact of doping levels in oxygen-doped gC_3N_4 and its effects on photocatalytic activity

机译:洞察掺杂水平对氧掺杂的gC_3N_4的影响及其对光催化活性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, graphitic carbon nitride (gC(3)N(4)) has hit the limelight as a bright, metal-free and visible-light responsive photocatalyst. Pristine gC(3)N(4), however, suffers from inadequate light absorption profile, limited surface area and significant recombination of photo-induced electron-hole pairs, thus requiring reformative strategies. Herein, this work has employed elemental doping of oxygen to gC(3)N(4) (O-gC(3)N(4)) and uncovered the evolution of properties that arises in conjunction with increasing doping level. These intrusive changes in properties by increasing oxygen doping levels are then evaluated based on the trends observed from photocatalytic hydrogen (H-2) evolution. It is revealed that oxygen doping had a competing dual effect to the photocatalytic activity. On one hand, oxygen doping introduced more porosity and added sub-gap impurity states in its electronic band structure, which resulted in enhanced light harvesting capabilities. On the other hand, impurity levels from high density oxygen groups behave detrimentally as potent electron-holes recombination centers. This became the governing factor for higher doping levels O-gC(3)N(4), which thereby resulted in a weakened photoactivity compared to pristine gC(3)N(4). In overall, it is hoped that the findings of this study can provide a new understanding of the rational design and oxygen-doping strategy for gC(3)N(4) for its photocatalytic enhancement.
机译:近年来,石墨氮化碳(gC(3)N(4))作为一种明亮,无金属和可见光的响应型光催化剂而备受关注。然而,原始的gC(3)N(4)受光吸收分布图不足,表面积有限以及光诱导电子-空穴对的显着重组的困扰,因此需要改革的策略。在这里,这项工作采用了氧元素掺杂到gC(3)N(4)(O-gC(3)N(4)),并发现了随着掺杂水平的提高而产生的性能演化。然后,根据从光催化氢(H-2)释放中观察到的趋势,评估通过增加氧掺杂水平而造成的这些侵入性性能变化。揭示了氧掺杂对光催化活性具有竞争双重作用。一方面,氧掺杂在其电子能带结构中引入了更多的孔隙度并增加了亚带隙杂质态,从而提高了光收集能力。另一方面,来自高密度氧基团的杂质水平作为有效的电子-空穴复合中心有害地表现。这成为较高掺杂水平O-gC(3)N(4)的控制因素,从而导致与原始gC(3)N(4)相比光敏性减弱。总的来说,希望这项研究的发现能为gC(3)N(4)的光催化增强提供合理的设计和氧掺杂策略的新认识。

著录项

  • 来源
    《Applied Surface Science》 |2020年第28期|144427.1-144427.11|共11页
  • 作者

  • 作者单位

    Monash Univ Sch Engn Chem Engn Discipline Multidisciplinary Platform Adv Engn Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia;

    Xiamen Univ Malaysia Sch Energy & Chem Engn Jalan Sunsuria Sepang 43900 Selangor Darul Malaysia;

    Monash Univ Sch Engn Mech Engn Discipline Multidisciplinary Platform Adv Engn Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia;

    Univ Sains Malaysia Sch Chem Engn Engn Campus Nibong Tebal 14300 Pulau Pinang Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    2-Dimensional; Graphitic carbon nitride; Doping; Photocatalyst; Hydrogen;

    机译:二维;石墨碳氮化物;掺杂光触媒;氢;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号