首页> 外文期刊>Applied Surface Science >Electronic And Atomic Structure Computation Of Disordered Low Index Surfaces Of γ-alumina
【24h】

Electronic And Atomic Structure Computation Of Disordered Low Index Surfaces Of γ-alumina

机译:γ-氧化铝无序低折射率表面的电子和原子结构计算

获取原文
获取原文并翻译 | 示例
       

摘要

Electronic and atomic structure of low index polar (001,011,111) spinel 7-alumina surfaces have been investigated using a modified large-scale quantum semi-empirical simulations. Atomic structure optimization and electronic structure calculation were done in the direct space on periodic large unit cells in which random distribution of cationic vacancies close to the surface were included. Predicted electronic structures match more accurate ab initio Density Functional Theory (DFT) results on aluminum oxides. We found that the restructured surfaces behave as amorphous-like shapeless planes provided unit cell dimensions are much greater than primitive translations as periodicity constraints are weakened. Aluminum ions vacancies in the surface region are shown to induce a surface atomic disordering even at 0 K, correlated with the appearance of low coordinated ions, as proven experimentally and theoretically with classical Molecular Dynamics (MD) calculation on some aluminum oxide systems. The lowering of the surface charge density is obtained from two distinct mechanisms involving large ion movements. On the oxygen rich plane termination, this results from the formation of O_2~(δ-) entities. On the aluminum rich plane termination, the same effect is related to a loss of co-ordination number together with a reduction of cationic charge. Furthermore, large-scale simulations allow to statistically quantify specific relaxed surface ion densities for which the Local Density of States (LDOS) is evaluated. Their inferred electronic properties are then compared to available probe molecule adsorption experiments investigated by infrared spectroscopy. We show that surface electronic states are not a simple function of ion coordination. Our large-scale quantum semi-empirical calculation fills the gap between atomic structures predicted by classical MD approach with electronic structure results obtained by DFT on small systems.
机译:使用改进的大规模量子半经验模拟研究了低折射率极性(001,011,111)尖晶石7-氧化铝表面的电子和原子结构。在周期性大晶胞的直接空间中进行了原子结构的优化和电子结构的计算,其中包括接近表面的阳离子空位的随机分布。预测的电子结构与氧化铝上的从头算密度泛函理论(DFT)结果更准确的匹配。我们发现,由于周期性约束被削弱,如果晶胞尺寸远大于原始平移,则重组后的表面表现为无定形的无定形平面。研究表明,即使在0 K下,表面区域中的铝离子空位也会引起表面原子无序,这与低配位离子的出现有关,这在某些氧化铝体系上通过经典分子动力学(MD)计算得到了实验和理论证明。表面电荷密度的降低是从涉及大离子运动的两种不同机理获得的。在富氧平面终止处,这是由O_2〜(δ-)实体的形成引起的。在富铝平面端子上,相同的效果与配位数的减少以及阳离子电荷的减少有关。此外,大规模的模拟可以统计地量化特定的弛豫表面离子密度,并针对其评估状态局部密度(LDOS)。然后将其推断的电子性质与通过红外光谱法研究的可用探针分子吸附实验进行比较。我们表明表面电子态不是离子配位的简单函数。我们的大规模量子半经验计算用DFT在小型系统上获得的电子结构结果填补了经典MD方法预测的原子结构之间的空白。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号