首页> 外文期刊>Applied Surface Science >Catalytic Reduction Of No In The Presence Of Benzene on A Pt(332) Surface
【24h】

Catalytic Reduction Of No In The Presence Of Benzene on A Pt(332) Surface

机译:Pt(332)表面上存在苯时催化还原No

获取原文
获取原文并翻译 | 示例
       

摘要

The catalytic reduction of NO in the presence of benzene on the surface of Pt(3 3 2) has been studied using Fourier transform infra red reflection-absorption spectroscopy (FT1R-RAS) and thermal desorption spectroscopy (TDS). 1R spectra show that while the presence of benzene molecules at low coverage (e.g., following an exposure of just 0.25 L) promotes NO-Pt interaction, the adsorption of NO on Pt(3 3 2) at higher benzene coverages is suppressed. It is also shown that there are no strong interactions between the adsorbed NO molecules and the benzene itself or benzene-derived hydrocarbons, which can lead to the formation of intermediate species that are essential for N_2 production. TDS results show that the adsorbed benzene molecules undergo dehydrogenation accompanied by hydrogen desorption starting at 300 K and achieving a maximum at 394 K. Subsequent dehydrogenation of the benzene-derived hydrocarbons then begins with hydrogen desorption starting at 500 K. N_2 desorption from NO adlayers on clean Pt(3 3 2) surface becomes significant at temperatures higher than 400 K, giving rise to a peak at 465 K. This peak corresponds to N_2 desorption from NO dissociation on step sites. The presence of benzene promotes N_2 desorption, depending on the benzene coverage. When the benzene exposure is 0.25 L, the N_2 desorption peak at 459 K is dramatically increased. Increasing benzene coverage also results in the intensification of N_2 desorption at ~410 K. At benzene exposures of 2.4 L, N_2 desorption develops as a broad peak with a maximum at ~439 K. It is concluded that the catalytic reduction of NO by platinum in the presence of benzene proceeds by NO decomposition and subsequent oxygen removal at temperatures lower than 500 K, and NO dissociation is a rate-limiting step. The contribution of benzene to N_2 desorption is mainly attributed to providing a source of H, which quickly reacts with NO-derived atomic O, leaving the surface with more vacant sites for further NO dissociation.
机译:使用傅里叶变换红外反射吸收光谱法(FT1R-RAS)和热解吸光谱法(TDS)研究了在Pt(3 3 2)表面上存在苯的情况下NO的催化还原。 1R光谱表明,虽然低覆盖率(例如仅暴露0.25 L后)存在苯分子会促进NO-Pt相互作用,但在较高苯覆盖率下,NO在Pt(3 3 2)上的吸附受到抑制。还表明,吸附的NO分子与苯本身或苯衍生的烃之间不存在强烈的相互作用,这可能导致形成N_2生产所必需的中间物种。 TDS结果表明,吸附的苯分子在300 K处发生脱氢并伴随着氢的解吸,随后在394 K处达到最大。随后,苯衍生的烃的随后脱氢从500 K开始进行氢解吸。干净的Pt(3 3 2)表面在高于400 K的温度下变得很显着,从而在465 K处出现一个峰。该峰对应于N_2在阶跃位置上从NO离解中解吸出来。苯的存在会促进N_2的解吸,具体取决于苯的覆盖范围。当苯暴露为0.25 L时,459 K处的N_2解吸峰急剧增加。苯覆盖率的增加还导致〜410 K时N_2的解吸加剧。在苯暴露量为2.4 L时,N_2的解吸出现一个宽峰,最大峰在〜439 K处。苯的存在是通过NO分解和随后在低于500 K的温度下除氧来进行的,而NO离解是一个限速步骤。苯对N_2解吸的贡献主要归因于提供了H源,该H源可与NO衍生的原子O快速反应,使表面具有更多的空位以进一步NO分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号