首页> 外文期刊>Applied Surface Science >Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons
【24h】

Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons

机译:边缘形状和宽度对硅纳米带结构和电子性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 A, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level E_F in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of △_(3n) > △_(3n+1) > △_(3n+2) for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.
机译:在广义梯度逼近(GGA)下,通过使用第一原理投影仪在波峰内增强的波势,研究了H端为锯齿形边缘(ZSiNRs)或扶手椅形边缘(ASiNRs)的H末端硅纳米带(SiNRs)的结构和电子性质。密度函数理论(DFT)框架。结果表明,Si-H键的长度始终为1.50 A,但边缘Si-Si键比取向相同的内部键短,这意味着边缘Si原子的收缩弛豫。边缘状态在较宽的ZSiNRs中出现在费米能级E_F处,但由于其边缘处的二聚体Si-Si键,因此并未在所有ASiNRs中出现。随着ASiNRs宽度的增加,对于某个整数n,直接带隙不仅表现出振荡行为,而且表现出△_(3n)>△_(3n + 1)>△_(3n + 2)的周期性特征。电荷密度轮廓分析表明,由于H原子的相对较大的电负性,Si-H键是离子键。然而,所有种类的Si-Si键都表现出典型的共价键特征,尽管它们的强度不仅取决于键的取向而且取决于键的位置。也就是说,Si-Si键取向与纳米带轴的偏差越大,并且Si-Si键与纳米带边缘越近,Si-Si键的强度越强。除了纳米带的收缩主要在其宽度方向上,特别是在边缘附近,来自封端的H原子的附加贡献可能是另一个原因。

著录项

  • 来源
    《Applied Surface Science》 |2010年第21期|P.6313-6317|共5页
  • 作者单位

    College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi, PR China College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan, PR China;

    ICMMO/LEMHE UMR CNRS 8182, Universite Paris-Sud 11,91405 Orsay Cedex, France;

    rnCollege of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi, PR China;

    College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    silicene nanoribbons; structure; electronic property; edge state; first-principles;

    机译:硅纳米带;结构体;电子财产;边缘状态第一性原理;
  • 入库时间 2022-08-18 03:07:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号