首页> 外文期刊>Applied Surface Science >Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds
【24h】

Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds

机译:飞秒双脉冲从飞秒到纳秒的时间延迟,增强了金属(铝和钛)激光烧蚀的发射信号

获取原文
获取原文并翻译 | 示例
       

摘要

Femtosecond double pulses with an inter pulse delay ranging from 100fs up to 2 ns are used to study the dynamics of laser ablation of metals under ambient conditions far above the ablation threshold. To that end femtosecond double pulses of 30 fs pulse duration at 785 nm having the same intensities are focused onto the sample with a NA 0.5 microscope objective. Signals from element specific spectral line transitions and from reflection of the plasma plume are recorded as function of delay between the two pulses. The corresponding ablation structures are analyzed via atomic force microscopy. Based on these different observables four different enhancement regimes of the element specific signals are identified and discussed with respect to different transient stages of the ablation process. Both metals (Al and Ti) show qualitatively the same transient behavior. A maximum signal enhancement of about five is achieved at an inter pulse delay around 800 ps. The ablation volume is approximately the same as compared to the corresponding single pulse ablation volume with doubled fluence. This result serves as a route to increase the spatial resolution of far-field spectrochemical imaging via laser-induced breakdown spectroscopy on the few μm scale and below.
机译:飞秒双脉冲,脉冲间延迟范围从100fs到2 ns,用于研究在远高于消融阈值的环境条件下金属激光消融的动力学。为此,用NA 0.5显微镜物镜将具有相同强度的在785 nm处具有30 fs脉冲持续时间的飞秒双脉冲聚焦到样品上。记录来自特定元素光谱线转换和等离子体羽流反射的信号,作为两个脉冲之间延迟的函数。通过原子力显微镜分析相应的消融结构。基于这些不同的可观察性,相对于消融过程的不同瞬态阶段,识别并讨论了四种不同的元件特定信号增强方案。两种金属(Al和Ti)在质量上都表现出相同的瞬态行为。在约800 ps的脉冲间延迟时,可获得约5的最大信号增强。与相应的具有双倍通量的单脉冲消融体积相比,消融体积大约相同。该结果成为通过几微米或更小的微米级激光诱导击穿光谱法提高远场光谱化学成像的空间分辨率的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号