...
首页> 外文期刊>Applied Surface Science >A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity
【24h】

A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity

机译:Fe3O4 @ TiO2-Au复合材料的温和合成途径:制备,表征和光催化活性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To prevent and avoid magnetic loss caused by magnetite core phase transitions involved in high-temperature crystallization of sol-gel TiO2, a direct and feasible low-temperature crystallization technique was developed to deposit anatase TiO2 nanoparticle shell on Fe3O4 sphere cores. To promote the photocatalytic efficiency of the obtained core-shell Fe3O4@TiO2 magnetic photocatalyst, uniformly distributed Au nanoparticles (NPs) were successfully immobilized on the core-shell Fe3O4@TiO2 spheres via a seed-mediated growth procedure. The 3 nm Au colloid absorbed on Fe3O4@TiO2 served as a nucleation site for the growth of Au NPs overlayer. The morphology, structure, composition and magnetism of the resulting composites were characterized, and their photocatalytic activities were also evaluated. In comparison to Fe3O4@TiO2, Fe3O4@TiO2-Au exhibited higher photocatalytic activity for organic degradation under UV irradiation. This enhanced mechanism may have resulted from efficient charge separation of photogenerated electrons and holes due to the Au NPs attached on the TiO2. In addition, the composites possessed superparamagnetic properties with a high saturation magnetization of 44.6 emu g(-1) and could be easily separated and recycled by a magnet. (C) 2015 Elsevier B.V. All rights reserved.
机译:为了防止和避免由溶胶-凝胶TiO2的高温结晶过程中的磁铁矿核相变引起的磁损耗,开发了一种直接可行的低温结晶技术,将锐钛矿型TiO2纳米颗粒壳沉积在Fe3O4球核上。为了提高获得的核-壳Fe3O4 @ TiO2磁性光催化剂的光催化效率,通过种子介导的生长过程将均匀分布的金纳米颗粒(NPs)成功地固定在核-壳Fe3O4 @ TiO2球上。吸收在Fe3O4 @ TiO2上的3 nm Au胶体是Au NPs覆盖层生长的成核位点。表征了所得复合材料的形貌,结构,组成和磁性,并评估了它们的光催化活性。与Fe3O4 @ TiO2相比,Fe3O4 @ TiO2-Au在紫外线辐射下对有机降解表现出更高的光催化活性。这种增强的机制可能是由于光生电子和空穴由于附着在TiO2上的Au NP的有效电荷分离而导致的。此外,该复合材料具有超顺磁性能,具有44.6 emu g(-1)的高饱和磁化强度,可以很容易地被磁体分离和回收。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号