...
首页> 外文期刊>Applied Surface Science >Improving photoelectrochemical performance on quantum dots co-sensitized TiO2 nanotube arrays using ZnO energy barrier by atomic layer deposition
【24h】

Improving photoelectrochemical performance on quantum dots co-sensitized TiO2 nanotube arrays using ZnO energy barrier by atomic layer deposition

机译:通过原子层沉积使用ZnO势垒改善量子点共敏TiO2纳米管阵列上的光电化学性能

获取原文
获取原文并翻译 | 示例
           

摘要

PbS and CdS quantum dots (QDs) have been deposited onto TiO2 nanotube arrays (TNTAs) in turn via a sonication-assisted successive ionic layer adsorption and reaction method. This method could uniformly decorate TNTAs with QDs, avoiding QDs aggregation at the mouth of TiO2 nanotube. The loading amounts of QDs on TNTAs could be controlled by adjusting the TNTAs length. Under one sun illumination, the QDs co-sensitized TNTAs (TNTAs/QDs) with the length of about 2.4 mu m displayed the highest photocurrent of 4.32 mA cm(-2), which is 27 times higher than that of the bare TNTAs. Introduction of a thin ZnO energy barrier by atomic layer deposition (ALD) between the TNTAs and QDs can further improve the photocurrent of TNTAs/QDs. And the TNTAs/QDs with 10 ALD cycles of ZnO interlayer exhibits the highest photocurrent of 5.24 mA cm(-2) and best photoconversion efficiency of 4.9%, a more than 20% enhancement over the bare TNTAs/QDs. Such enhanced photoelectrochemical performance may be ascribed to the increased amounts of QDs on the TNTAs due to the introduction of ZnO interlayer. The benefits of ALD layers play a crucial role in development and optimization of high-performance photoelectrodes in the near future. (C) 2015 Elsevier B.V. All rights reserved.
机译:PbS和CdS量子点(QDs)已通过超声辅助连续离子层吸附和反应方法依次沉积在TiO2纳米管阵列(TNTAs)上。该方法可以用QDs均匀地装饰TNTA,避免了QDs在TiO2纳米管口的聚集。可以通过调整TNTA的长度来控制QTA在TNTA上的负载量。在一个阳光照射下,QDs共敏化TNTA(TNTAs / QDs)的长度约为2.4微米,显示出最大的光电流为4.32 mA cm(-2),比裸露的TNTA高27倍。通过在TNTA和QD之间进行原子层沉积(ALD)引入薄的ZnO势垒可以进一步改善TNTA / QD的光电流。带有10个ALD循环的ZnO中间层的TNTA / QD显示出5.24 mA cm(-2)的最高光电流和4.9%的最佳光转换效率,比裸TNTA / QD增强了20%以上。这种增强的光电化学性能可以归因于由于引入了ZnO中间层而导致TNTA上QD数量的增加。 ALD层的优势在不久的将来对高性能光电极的开发和优化起着至关重要的作用。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2016年第ptaa期|352-358|共7页
  • 作者单位

    Hainan Univ, Key Lab, Minist Educ Adv Mat Trop Isl Resources, Coll Mat & Chem Engn, Haikou 570228, Peoples R China;

    Yunnan Normal Univ, Coll Chem & Chem Engn, Kunming 650500, Peoples R China;

    Hainan Univ, Key Lab, Minist Educ Adv Mat Trop Isl Resources, Coll Mat & Chem Engn, Haikou 570228, Peoples R China;

    Hainan Univ, Key Lab, Minist Educ Adv Mat Trop Isl Resources, Coll Mat & Chem Engn, Haikou 570228, Peoples R China;

    Hainan Univ, Key Lab, Minist Educ Adv Mat Trop Isl Resources, Coll Mat & Chem Engn, Haikou 570228, Peoples R China;

    Hainan Univ, Key Lab, Minist Educ Adv Mat Trop Isl Resources, Coll Mat & Chem Engn, Haikou 570228, Peoples R China;

    Hainan Univ, Key Lab, Minist Educ Adv Mat Trop Isl Resources, Coll Mat & Chem Engn, Haikou 570228, Peoples R China;

    Hainan Univ, Key Lab, Minist Educ Adv Mat Trop Isl Resources, Coll Mat & Chem Engn, Haikou 570228, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    TiO2 nanotube arrays; Quantum dots; Interface modification; Atomic layer deposition;

    机译:TiO2纳米管阵列;量子点;界面修饰;原子层沉积;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号