...
首页> 外文期刊>Applied Surface Science >Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite
【24h】

Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite

机译:镜质煤的分子模拟与CH4吸附机理

获取原文
获取原文并翻译 | 示例
           

摘要

The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, C-13 NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH(4)s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top < Bond < Center, Up < Down. The order of average RDF better reflects the adsorption ability and that of [- COOH] is lower than those of [- C =O] and [ C -O- C]. CH4 distributed in the distance of 0.99- 16 angstrom to functional groups in the type of monolayer adsorption and the average distance order manifest as [ -C= O] (1.64 angstrom) < [ C -O -C] (1.89 angstrom) < [ -COOH] (3.78 angstrom) < [- CH3] (4.11 angstrom) according to the average RDF curves. CH4 enriches around [- C =O] and [ C -O- C] whereas is rather dispersed about [- COOH] and [ CH3]. Simulation and experiment data are both in strong agreement with the Langmuir and D- A isothermal adsorption model and the D- A model fit better than Langmuir model. Preferential adsorption sites and orientations in vitrinite are identical to those of graphite/graphene. However, the energy of the most preferential location is much lower than that of graphite/graphene. CH4 is more easily absorbed on the surface of vitrinite. Adsorbability varies considerably at different adsorption locations and sites on the surface of vitrinite. Crystal parameter of vitrinite is a = b = c = 15.8 angstrom and majority of its micropores are blow 15.8 angstrom, indicating that the vitrinite have the optimum adsorption aperture. It can explain its higher observed adsorption capacities for CH4 compared with graphite/ graphene. (C) 2016 Elsevier B. V. All rights reserved.
机译:CH4与煤大分子相互作用的微观机理对于煤层气的开发和甲烷的储存具有重要的实践和理论意义。在周期性边界条件下,可以通过分子力学(MM)和分子动力学(MD)的计算以及基于最终分析的退火动力学模拟来确定具有更高扭转度和更紧密排列的镜质煤的最佳能量构型。 ,C-13 NMR,FT IR和HRTEM。大分子稳定化主要归因于范德华能和共价键能,主要由键扭转能和键角能组成。使用最佳配置作为吸附剂,进行了GCMC对镜质体对CH4吸附的模拟。每个煤镜质分子吸收17 CH(4)s后达到饱和状态。 CH4优先吸附在边缘,并倾向于聚集在内部镜质部位的支链周围。最后,通过第一原理DFT计算吸附参数。吸附顺序如下:芳族结构>杂原子环>氧官能团。吸附能的顺序如下:顶部<键<中心,向上<向下。平均RDF的阶数更好地反映了吸附能力,并且[-COOH]的阶数比[-C = O]和[C-O-C]的阶数低。 CH4在单层吸附类型中以0.99-16埃的距离分布到官能团,平均距离顺序表现为[-C = O](1.64埃)<[C -O -C](1.89埃)<[根据平均RDF曲线,-[COOH](3.78埃)<[-CH3](4.11埃)。 CH 4富集在[-C = O]和[C -OC-C]周围,而在[-COOH]和[CH3]周围分散。模拟和实验数据均与Langmuir和D-A等温吸附模型高度吻合,并且D-A模型比Langmuir模型更适合。镜质石中的优选吸附位和取向与石墨/石墨烯的相同。但是,最优先位置的能量远低于石墨/石墨烯的能量。 CH4更易于吸附在镜质石表面上。在镜质体表面上不同的吸附位置和位置,吸附能力差异很大。镜质体的晶体参数为a = b = c = 15.8埃,并且其微孔的大部分为15.8埃,表明该镜质体具有最佳的吸附孔径。它可以解释它比石墨/石墨烯具有更高的CH4吸附能力。 (C)2016 Elsevier B. V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号