首页> 外文期刊>Applied Surface Science >Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO_2/Stanene heterostructures employing DFT calculations
【24h】

Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO_2/Stanene heterostructures employing DFT calculations

机译:利用DFT计算探索新颖的TiO_2 / Stanene异质结构对二氧化氮和臭氧分子的感测

获取原文
获取原文并翻译 | 示例
           

摘要

Based on the density functional theory (DFT) calculations, we explored the sensing capabilities and electronic structures of TiO2/Stanene heterostructures as novel and highly efficient materials for detection of toxic NO2 and O-3 molecules in the environment. Studied gas molecules were positioned at different sites and orientations towards the nanocomposite, and the adsorption process was examined based on the most stable structures. We found that both of these molecules are chemically adsorbed on the TiO2/Stanene heterostructures. The calculations of the adsorption energy indicate that the fivefold coordinated titanium sites of the TiO2/Stanene are the most stable sites for the adsorption of NO2 and O-3 molecules. The side oxygen atoms of the gas molecules were found to be chemically bonded to these titanium atoms. The adsorption of gas molecules is an exothermic process, and the adsorption on the pristine nanocomposite is more favorable in energy than that on the nitrogen-doped nanocomposite. The effects of van der Waals interactions were taken into account, which indicate the adsorption energies were increased for the most sable configurations. The gas sensing response and charge transfers were analyzed in detail. The pristine nanocomposites have better sensing response than the doped ones. The spin density distribution plots indicate that the magnetization was mainly located over the adsorbed gas molecules. Mulliken charge analysis reveals that both NO2 and O-3 molecules behave as charge acceptors, as evidenced by the accumulation of electronic charges on the adsorbed molecules predicted by charge density difference calculations. Our DFT results provide a theoretical basis for an innovative gas sensor system designed from a sensitive TiO2/Stanene heterostructures for efficient detection of harmful air pollutants such as NO2 and O-3. (C) 2018 Elsevier B.V. All rights reserved.
机译:基于密度泛函理论(DFT)计算,我们探索了TiO2 / Stanene异质结构作为检测环境中有毒NO2和O-3分子的新型高效材料的传感能力和电子结构。研究的气体分子位于纳米复合材料的不同位置和方向,并根据最稳定的结构检查了吸附过程。我们发现这两个分子都化学吸附在TiO2 / Stanene异质结构上。吸附能的计算表明,TiO2 / Stanene的五重配位钛位点是最稳定的NO2和O-3分子吸附位点。发现气体分子的侧氧原子化学键合到这些钛原子上。气体分子的吸附是一个放热过程,与未掺杂氮的纳米复合材料相比,原始纳米复合材料的吸附在能量上更有利。考虑了范德华相互作用的影响,这表明对于最稳定的构型,吸附能增加了。详细分析了气体感应响应和电荷转移。原始的纳米复合材料比掺杂的纳米复合材料具有更好的感测响应。自旋密度分布图表明,磁化作用主要位于吸附的气体分子上方。 Mulliken电荷分析表明,NO2和O-3分子均充当电荷受体,这通过电荷密度差计算预测的吸附分子上电子电荷的积累得以证明。我们的DFT结果为创新的气体传感器系统提供了理论基础,该系统由敏感的TiO2 / Stanene异质结构设计,可有效检测有害的空气污染物,例如NO2和O-3。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号