首页> 外文期刊>Applied Physics >Engulfment and distribution of second-phase nanoparticle during dendrite solidification of an Al-Si binary alloy: a simulation study
【24h】

Engulfment and distribution of second-phase nanoparticle during dendrite solidification of an Al-Si binary alloy: a simulation study

机译:Al-Si二元合金枝晶凝固过程中第二相纳米粒子的吞噬与分布:模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

To achieve optimum strengthening effects of external nanoparticles (NPs), uniform dispersion of NPs in the melt is necessary for the casting manufacturing of metal matrix nanocomposites in which dislocation-based strengthening mechanisms play a significant role. However, the engulfment of nanoparticles within the solidifying grains and the avoidance of pushing them outside the solidification front are always a major challenge. Therefore, the understanding of local interface velocity and interface/particle dynamics during alloy solidification is of significant importance. Existing numerical studies on particle engulfment/pushing do not take into consideration the anisotropy of crystal growth and assume planar solidification interface, and thus they are unable to obtain the nanoparticle distribution in realistic alloy solidification. In this research, we investigate the engulfment/push behavior and the overall distribution of SiO2 nanoparticles in the dendrite solidification of an Al-Si binary alloy. Phase-field method is used to simulate the dendrite growth and to predict local solidification front velocity. In combination with the critical engulfment velocity obtained from a non-steady-state particle/front interaction model, the engulfment/push behavior of the entire solidification domain as well as the final distribution of nanoparticles can be analyzed. It is found that the distribution pattern of NPs obtained from simulation is overall consistent with the limited experimental results in the literature. In addition, the two main dislocation-based strengthening effects, e.g., Orowan bowing and CTE (coefficient of thermal expansion) mismatch strengthening, brought by external nanoparticles are quantitatively predicted. The degree of undercooling (60, 80, and 100K) and nanoparticle size (10, 20, 30, 40, and 50nm) are varied to investigate their influence on the NP engulfment behavior and the resulted strengthening effects.
机译:为了实现外部纳米颗粒(NPs)的最佳增强效果,NPs在熔体中的均匀分散对于铸造中基于位错的增强机制起着重要作用的金属基质纳米复合材料是必需的。然而,纳米颗粒在凝固晶粒内的吞噬和避免将其推到凝固前沿之外一直是主要的挑战。因此,了解合金凝固过程中局部界面速度和界面/颗粒动力学非常重要。现有的关于粒子吞没/推动的数值研究没有考虑晶体生长的各向异性,并没有考虑平面凝固界面,因此他们无法获得现实合金凝固过程中的纳米粒子分布。在这项研究中,我们研究了Al-Si二元合金的枝晶凝固过程中SiO2纳米粒子的吞没/推动行为及其整体分布。相场法用于模拟枝晶生长并预测局部凝固前沿速度。结合从非稳态颗粒/前沿相互作用模型获得的临界吞噬速度,可以分析整个凝固域的吞噬/推动行为以及纳米颗粒的最终分布。发现从模拟获得的NP的分布模式总体上与文献中有限的实验结果一致。另外,定量地预测了外部纳米颗粒带来的基于位错的两种主要的强化效果,例如,Orowan弯曲和CTE(热膨胀系数)失配强化。改变过冷度(60、80和100K)和纳米颗粒大小(10、20、30、40和50nm),以研究它们对NP吞噬行为的影响以及所产生的强化效果。

著录项

  • 来源
    《Applied Physics》 |2019年第6期|449.1-449.12|共12页
  • 作者

    Wang Yachao; Shi Jing;

  • 作者单位

    Univ Cincinnati, Dept Mech & Mat Engn, Coll Engn & Appl Sci, Cincinnati, OH 45221 USA;

    Univ Cincinnati, Dept Mech & Mat Engn, Coll Engn & Appl Sci, Cincinnati, OH 45221 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号