首页> 外文期刊>Applied Physics >Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing
【24h】

Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing

机译:由于能量耦合的局限性,激光加工的选择性:薄膜太阳能电池划片的情况

获取原文
获取原文并翻译 | 示例
       

摘要

Selectiveness of the laser processing is the topmost important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.
机译:激光加工的选择性对于将加工技术应用于包括光伏在内的薄膜电子产品至关重要。通过实验和理论研究了多层薄膜结构中激光能量的耦合,具体取决于层的光物理性质和激光波长。薄膜内的能量耦合高度取决于薄膜结构。应用了有限元模型和双温度模型来模拟皮秒激光辐照过程中薄膜太阳能电池不同层堆叠内部的能量和温度分布。膜对激光辐照的反应通过在激光辐照波长下的层的光学性质来调节。仿真结果与使用皮秒脉冲激光器在柔性聚合物基板上对铜铟镓硒(CIGS)太阳能电池进行激光划刻所获得的实验数据一致。选择正确的激光波长(1064 nm或1572 nm)可以将能量耦合保持在层间界面的明确定义的体积内。层的内界面处的高吸收引起局部温度升高。快速升温引起的瞬态应力促进了薄膜的剥离而不是蒸发。超短脉冲确保高能量输入到吸收材料中,从而允许剥离层而不会影响剩余材料。

著录项

  • 来源
    《Applied Physics》 |2013年第1期|93-98|共6页
  • 作者单位

    Department of Laser Technologies, Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania;

    Department of Laser Technologies, Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania;

    Department of Laser Technologies, Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania;

    Department of Laser Technologies, Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号