首页> 外文期刊>Applied physics >Space-borne remote sensing of CO_2, CH_4, and N_2O by integrated path differential absorption lidar: a sensitivity analysis
【24h】

Space-borne remote sensing of CO_2, CH_4, and N_2O by integrated path differential absorption lidar: a sensitivity analysis

机译:集成路径差分吸收激光雷达对CO_2,CH_4和N_2O的星载遥感:灵敏度分析

获取原文
获取原文并翻译 | 示例
           

摘要

CO_2, CH_4, and N_2O are recognised as the most important greenhouse gases, the concentrations of which increase rapidly through human activities. Space-borne integrated path differential absorption lidar allows global observations at day and night over land and water surfaces in all climates. In this study we investigate potential sources of measurement errors and compare them with the scientific requirements. Our simulations reveal that moderate-size instruments in terms of telescope aperture (0.5-1.5 m) and laser average power (0.4-4 W) potentially have a low random error of the greenhouse gas column which is 0.2% for CO_2 and 0.4% for CH_4 for soundings at 1.6 μm, 0.4% for CO_2 at 2.1 μm, 0.6% for CH4 at 2.3 μm, and 0.3% for N_2O at 3.9 μm. Coherent detection instruments are generally limited by speckle noise, while direct detection instruments suffer from high detector noise using current technology. The wavelength selection in the vicinity of the absorption line is critical as it controls the height region of highest sensitivity, the temperature cross-sensitivity, and the demands on frequency stability. For CO_2, an error budget of 0.08% is derived from our analysis of the sources of systematic errors. Among them, the frequency stability of ±0.3 MHz for the laser transmitter and spectral purity of 99.9% in conjunction with a narrow-band spectral filter of 1 GHz (FWHM) are identified to be challenging instrument requirements for a direct detection CO_2 system operating at 1.6 μm.
机译:CO_2,CH_4和N_2O被认为是最重要的温室气体,其浓度通过人类活动而迅速增加。星载集成路径差分吸收激光雷达可在所有气候条件下白天和黑夜对陆地和水面进行全球观测。在这项研究中,我们调查了测量误差的潜在来源,并将其与科学要求进行了比较。我们的模拟表明,就望远镜孔径(0.5-1.5 m)和激光平均功率(0.4-4 W)而言,中等尺寸的仪器可能具有较低的温室气体柱随机误差,即CO_2为0.2%,CO_2为0.4%。探测深度为1.6μm的CH_4、2.1μm处的CO_2为0.4%,2.3μm处的CH4为0.6%,N 3.9O处的N_2O为0.3%。相干检测仪器通常受到散斑噪声的限制,而直接检测仪器使用当前技术会遭受较高的检测器噪声。吸收线附近的波长选择至关重要,因为它控制着最高灵敏度的高度区域,温度交叉灵敏度以及对频率稳定性的要求。对于CO_2,我们对系统误差源的分析得出0.08%的误差预算。其中,对于激光发射器,±0.3 MHz的频率稳定性和99.9%的光谱纯度与1 GHz的窄带光谱滤波器(FWHM)结合使用,被认为是对直接检测CO_2系统运行的挑战性仪器要求。 1.6微米

著录项

  • 来源
    《Applied physics》 |2008年第4期|p.593-608|共16页
  • 作者单位

    Institut fuer Physik der Atmosphare, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) e.V.,82234 Oberpfaffenhofen, Germany;

    rnInstitut fuer Physik der Atmosphare, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) e.V.,82234 Oberpfaffenhofen, Germany;

    rnInstitut fuer Physik der Atmosphare, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) e.V.,82234 Oberpfaffenhofen, Germany;

    rnInstitut fuer Physik der Atmosphare, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) e.V.,82234 Oberpfaffenhofen, Germany;

    rnInstitut fuer Physik der Atmosphare, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) e.V.,82234 Oberpfaffenhofen, Germany;

    rnNational Institute for Space Research (SRON), Utrecht, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    remote sensing; LIDAR and adaptive systems; adaptive and segmented optics;

    机译:遥感;激光雷达和自适应系统;自适应和分段光学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号