...
首页> 外文期刊>Applied Physics Letters >A robust high sensitivity scanning thermal probe for simultaneous microscale thermal and thermoelectric property mapping
【24h】

A robust high sensitivity scanning thermal probe for simultaneous microscale thermal and thermoelectric property mapping

机译:一种坚固的高灵敏度扫描热探针,用于同时微观热和热电性能映射

获取原文
获取原文并翻译 | 示例
           

摘要

Scanning Thermal Microscopy (SThM) provides efficient thermal property measurement with micro- or nanoscale spatial resolution. However, the sensitivity and accuracy of state-of-the-art thermal probes have been limited by excessive thermal contact resistance between the probe and sample. Introduced herein is a robust thermal microprobe that can increase the probe-sample contact force by more than two orders of magnitude, thereby reducing the probe-sample thermal contact resistance by as much as 96% and increasing measurement sensitivity by more than 240% compared to a commercial thermal probe with the same dimensions and measurement principle. The relationship between the probe-sample thermal contact resistance, thermal exchange radius, and sample thermal conductivity is determined experimentally. Simultaneous measurement of thermal conductivity and Seebeck coefficient with unprecedented sensitivity is demonstrated using the enhanced scanning thermal microprobe on samples of an extended range of thermal conductivity up to 18 W/m K, increasing the range of samples applicable to SThM when compared to the conventional commercial probe with diminished measurement sensitivity above ~10W/mK. The probe is further demonstrated by simultaneously mapping thermal conductivity and Seebeck coefficient as a function of depth from the irradiated surface of an ion-irradiated bulk nanostructured thermoelectric material. In addition to enabling microscale thermal conductivity and Seebeck coefficient measurement of materials previously not applicable to SThM, the probe can also facilitate high-throughput characterization of combinatorial materials to aid the rapid discovery of compositions and processing conditions that yield highly desired thermal and thermoelectric properties.
机译:扫描热显微镜(STHM)通过微型或纳米级空间分辨率提供有效的热性能测量。然而,最先进的热探针的灵敏度和准确性受到探针和样品之间的过热接触电阻的限制。本文介绍的是一种稳健的热微探针,可以通过两个以上的数量级增加探针样接接触力,从而使探针样品热接触电阻通过高达96%并增加了与具有相同尺寸和测量原理的商业热探针。实验确定探针样品热接触电阻,热交换半径和样品导热率之间的关系。使用增强的扫描热微探针在延伸的导热率的延伸范围的扫描热微探针上的延伸范围为18W / m k的样品上进行热导电和塞贝克系数的同时测量,其增加与传统商业商业相比,增加适用于STHM的样品范围测量敏感性降低〜10W / MK的探头。通过从离子照射块状纳米结构热电材料的照射表面同时映射导热率和塞贝克系数,进一步通过映射导热系数和塞贝克系数来证明探针。除了实现先前不适用于STHM的材料的微观导热性和塞贝克系数测量,还可以促进组合材料的高通量表征,以帮助快速发现组合物和加工条件,从而产生高效的热电性和热电性能。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第11期|113902.1-113902.5|共5页
  • 作者

    Nicholas Kempf; Yanliang Zhang;

  • 作者单位

    Department of Aerospace and Mechanical Engineering University of Notre Dame 374 Fitzpatrick Hall Notre Dame Indiana 46556 USA;

    Department of Aerospace and Mechanical Engineering University of Notre Dame 374 Fitzpatrick Hall Notre Dame Indiana 46556 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号