首页> 外文期刊>Applied Physics Letters >Temperature dependence of the energy barrier in X/1X nm shape-anisotropy magnetic tunnel junctions
【24h】

Temperature dependence of the energy barrier in X/1X nm shape-anisotropy magnetic tunnel junctions

机译:X / 1x NM形状 - 各向异性磁隧道连接中的能量屏障的温度依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

Shape-anisotropy magnetic tunnel junctions (MTJs) are attracting much attention as a high-performance nonvolatile spintronic device in the X/1X nm regime. In this study, we investigate an energy barrier relevant to the retention property in CoFeB/MgO-based shape-anisotropy MTJs with various diameters at high temperatures and compare it with that in conventional interfacial-anisotropy MTJs. We find that the scaling relationship between the energy barrier and the spontaneous magnetization in shape-anisotropy MTJs is well described by a model assuming the dominant contribution of shape anisotropy to the energy barrier. Also, the scaling exponent is much smaller than that for the interfacial-anisotropy MTJs, indicating that the properties of shape-anisotropy MTJs are less sensitive to the temperature. Using the experimentally determined scaling relationship, we discuss the design window of the MTJ dimensions to achieve data retention of 10 years at various temperatures. This study demonstrates that the shape-anisotropy MTJ holds promise of scaling beyond 20 nm for high-temperature applications.
机译:形状各向异性磁隧道结(MTJS)在X / 1X NM制度中吸引了作为高性能非易失性的旋转式设备的关注。在这项研究中,我们研究了与高温下具有各种直径的CoFeB / MgO的形状 - 各向异性MTJ中相关的能量屏障,并将其与常规界面 - 各向异性MTJS进行比较。我们发现,假设形状各向异性对能量屏障的主导贡献,所以通过模型描述了能量屏障与自发磁化之间的缩放关系。而且,缩放指数远小于界面各向异性MTJ的缩放指数,表明形状 - 各向异性MTJ的性质对温度不太敏感。使用实验确定的缩放关系,我们讨论了MTJ尺寸的设计窗口,以在各种温度下实现10年的数据保留。本研究表明,用于高温应用的形状 - 各向异性MTJ保持缩放超过20nm的承诺。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第1期|012409.1-012409.5|共5页
  • 作者单位

    Laboratory for Nanoelectronics and Spintronics Research Institute of Electrical Communication Tohoku University Sendai 980-8577 Japan;

    WPI Advanced Institute for Materials Research Tohoku University Sendai 980-8577 Japan;

    Universite de Lorraine Institut Jean Lamour UMR CNRS 7198 Nancy France;

    Universite de Lorraine Institut Jean Lamour UMR CNRS 7198 Nancy France;

    Laboratory for Nanoelectronics and Spintronics Research Institute of Electrical Communication Tohoku University Sendai 980-8577 Japan WPI Advanced Institute for Materials Research Tohoku University Sendai 980-8577 Japan Center for Spintronics Research Network Tohoku University Sendai 980-8577 Japan Center for Science and Innovation in Spintronics Tohoku University Sendai 980-8577 Japan Center for Innovative Integrated Electronic Systems Tohoku University Sendai 980-0845 Japan;

    Laboratory for Nanoelectronics and Spintronics Research Institute of Electrical Communication Tohoku University Sendai 980-8577 Japan WPI Advanced Institute for Materials Research Tohoku University Sendai 980-8577 Japan Center for Spintronics Research Network Tohoku University Sendai 980-8577 Japan Center for Science and Innovation in Spintronics Tohoku University Sendai 980-8577 Japan Center for Innovative Integrated Electronic Systems Tohoku University Sendai 980-0845 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号