首页> 外文期刊>Applied Physics Letters >Influence of stacking disorder on cross-plane thermal transport properties in TMPS_3 (TM = Mn, Ni, Fe)
【24h】

Influence of stacking disorder on cross-plane thermal transport properties in TMPS_3 (TM = Mn, Ni, Fe)

机译:堆叠紊乱对TMPS_3(TM = Mn,Ni,Fe)的平面热传输性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

We investigated the thermal transport properties of magnetic van der Waals materials, TMPS_3 (TM = Mn, Ni, and Fe), using the time-domain thermoreflectance technique. We determined the cross-plane thermal conductivity, which turns out to be relatively low, i.e., about 1W m~(-1) K~(-1) for all TMPS_3 investigated. When compared with previous results of graphite and transition metal dichalcogenides (TMDs), thermal conductivity becomes smaller as it goes from graphite to TMDs to TMPS_3, and the difference is larger at low temperature, e.g., around 50 K. From the Callaway model analysis, we could attribute the large thermal conductivity reduction for TMPS_3, particularly at low temperature, to the phonon scattering from the boundary. We actually confirmed the existence of the large population of the stacking faults with the cross-sectional transmission electron microscopy image of MnPS_3. This suggests that intrinsic or extrinsic stacking faults formed in van der Waals materials and their heterostructures can play an important role in reducing the cross-plane thermal conductivity as a source of the boundary scattering.
机译:我们使用时域热反射技术调查了磁性范德华材料,TMPS_3(TM = Mn,Ni和Fe)的热传输性能。我们确定了相对较低的平面导热率,即所有TMPS_3所研究的约1W m〜(-1)k〜(-1)。与先前的石墨和过渡金属二甲基甲基化物(TMDS)相比,当它从石墨到TMDS到TMPS_3时,导热率变小,并且在低温下差异较大,例如约50k。来自Callaway模型分析,我们可以将TMPS_3的大导热率降低,特别是在低温下,以从边界到散射的声音。我们实际上确实证实存在具有MNPS_3的横截面透射电子显微镜图像的堆叠故障的大群。这表明在范德华材料中形成的内在或外在堆叠故障及其异质结构可以在将交叉平面导热率作为边界散射的源降低时起着重要作用。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第6期|063103.1-063103.4|共4页
  • 作者单位

    Department of Physics and Photon Science Gwangju Institute of Science and Technology (GIST) Gwangju 61005 South Korea;

    Department of Physics and Photon Science Gwangju Institute of Science and Technology (GIST) Gwangju 61005 South Korea;

    Department of Physics and Photon Science Gwangju Institute of Science and Technology (GIST) Gwangju 61005 South Korea;

    Center for Correlated Electron Systems Institute for Basic Science Seoul 08826 South Korea Department of Physics and Astronomy Seoul National University Seoul 08826 South Korea Center for Quantum Materials Seoul National University Seoul 08826 South Korea;

    School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 South Korea;

    Department of Physics Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 South Korea;

    Center for Correlated Electron Systems Institute for Basic Science Seoul 08826 South Korea Department of Physics and Astronomy Seoul National University Seoul 08826 South Korea;

    Department of Physics Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 South Korea;

    School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 South Korea;

    Center for Correlated Electron Systems Institute for Basic Science Seoul 08826 South Korea Department of Physics and Astronomy Seoul National University Seoul 08826 South Korea Center for Quantum Materials Seoul National University Seoul 08826 South Korea;

    Department of Physics and Photon Science Gwangju Institute of Science and Technology (GIST) Gwangju 61005 South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:18:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号