首页> 外文期刊>Applied Physics Letters >Carrier leakage via interface-rough ness scattering bridges gap between theoretical and experimental internal efficiencies of quantum cascade lasers
【24h】

Carrier leakage via interface-rough ness scattering bridges gap between theoretical and experimental internal efficiencies of quantum cascade lasers

机译:载体泄漏通过界面粗糙的NESS散射桥梁在Quantum级联激光器的理论和实验内效应之间的差距

获取原文
获取原文并翻译 | 示例
       

摘要

When conventionally calculating carrier leakage for state-of-the-art quantum cascade lasers (QCLs), that is, LO-phonon-assisted leakage from the upper laser level via electron thermal excitation to high-energy active-region (AR) states, followed by relaxation to low-energy AR states, ~18%-wide gaps were recently found between calculated and experimentally measured internal efficiency values. We incorporate elastic scattering [i.e., interface-roughness (IFR) and alloy-disorder scattering] into the carrier-leakage process and consider carrier leakage from key injector states as well. In addition, the expressions for LO-phonon and IFR-triggered carrier-leakage currents take into account the large percentage of thermally excited electrons that return back to initial states via both inelastic and elastic scattering. As a result, we find that the gaps between theoretical and experimental internal efficiency values are essentially bridged. Another finding is that, for the investigated state-of-the-art structures, IFR scattering causes the total carrier leakage to reach values as much as an order of magnitude higher than conventional inelastic scattering-only leakage. The developed formalism opens the way to significantly increase the internal efficiency (i.e., to more than 80%) via IFR-scattering engineering, such that maximum wall-plug efficiencies close to projected fundamental, both-facets values (e.g., 42% at λ = 4.6 μm) can be achieved. By employing this formalism, we reached a 4.6 μm-emitting-QCL preliminary design for suppressing IFR-triggered carrier leakage, which provides an internal efficiency of 86% as well as a projected single-facet wall-plug efficiency value of 36% at a heatsink temperature of 300 K.
机译:当传统上计算用于最先进的量子级联激光器(QCLS)的载体泄漏,即,通过电子热激励到高能量有源区(AR)状态,LO-Phonon辅助泄漏,随后对低能量AR辐射放松,最近在计算和实验测量的内部效率值之间找到了〜18%的差距。我们将弹性散射[即,界面粗糙度(IFR)和合金紊乱散射]进入载体泄漏过程,并考虑来自钥匙注射器状态的载体泄漏。另外,LO-Phonon和IFR触发的载波泄漏电流的表达考虑到通过非弹性和弹性散射返回初始状态的大百分比的热激发电子。因此,我们发现理论和实验内部效率值之间的差距基本上是桥接。另一个发现是,对于所研究的最先进的结构,IFR散射使总载体泄漏达到比常规无弹性散射泄漏高的数量级。开发的形式主义通过IFR散射工程开启了显着提高内部效率(即,超过80%)的方式,使得最大壁塞效率接近投影的基础,两方面值(例如,在λ处42%可以实现=4.6μm)。通过采用这种形式主义,我们达到了4.6微米的发光QCL初步设计,用于抑制IFR触发的载体泄漏,该设计提供了86%的内部效率,并且在a下投影的单面壁插头效率值为36%散热温度为300 k。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第5期|051101.1-051101.6|共6页
  • 作者单位

    Department of Electrical and Computer Engineering University of Wisconsin Madison Wisconsin 53706 USA;

    Department of Electrical and Computer Engineering University of Wisconsin Madison Wisconsin 53706 USA;

    Department of Electrical and Computer Engineering University of Wisconsin Madison Wisconsin 53706 USA;

    Material Science Center Philipps-Universitat Marburg 35032 Marburg Germany;

    Department of Electrical and Computer Engineering University of Wisconsin Madison Wisconsin 53706 USA;

    Department of Electrical and Computer Engineering University of Wisconsin Madison Wisconsin 53706 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:17:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号