首页> 外文期刊>Applied Physics Letters >Two-photon phase-sensing with single-photon detection
【24h】

Two-photon phase-sensing with single-photon detection

机译:用单光子检测双光子相位感测

获取原文
获取原文并翻译 | 示例
       

摘要

Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit, provided that an efficient parity measurement can be implemented. Realizing this experimentally is technologically demanding, as it requires coincident single-photon detection proportional to the number of photons involved, which represents a severe challenge for achieving a practical quantum advantage over classical methods. Here, we exploit advanced quantum state engineering based on superposing two photon-pair creation events to realize a new approach that bypasses this issue. In particular, optical phase shifts are probed with a two-photon quantum state whose information is subsequently effectively transferred to a single-photon state. Notably, without any multiphoton detection, we infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode, in analogy to standard classical measurements. Importantly, our approach maintains the quantum advantage: twice as many interference fringes are observed for the same phase shift, corresponding to N=2 path-entangled photons. Our results demonstrate that the advantages of quantum-enhanced phase sensing can be fully exploited in standard intensity measurements, paving the way toward resource-efficient and practical quantum optical metrology.
机译:路径缠绕的多光子状态允许超出射击噪声限制的光学相位感测,只要可以实现有效的奇偶校验测量。在实验上实现这一技术在技术上要求,因为它需要与所涉及的光子数量成比例的重合单光子检测,这代表了在古典方法上实现实际量子优势的严重挑战。在这里,我们基于叠加两个光子对创建事件来利用先进的量子状态工程,以实现一种绕过这个问题的新方法。特别地,用双光子量子状态探测光学相移,其信息随后有效地传递到单光子状态。值得注意的是,没有任何多相检测,通过测量光电二极管上的单光子束的平均强度,类似于标准经典测量,我们推断相移。重要的是,我们的方法保持量子优势:对于相同相移观察到相同的相移的两倍,对应于n = 2路径缠结的光子。我们的结果表明,量子增强相位感测的优点可以充分利用标准强度测量,铺平资源有效和实用的量子光学计量。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第2期|024001.1-024001.5|共5页
  • 作者单位

    Universite Cote d'Azur Institut de Physique de Nice (INPHYNI) CNRS Parc Valrose 06108 Nice Cedex 2 France;

    3rd Institute of Physics IQST and Research Center SCoPE University of Stuttgart 70569 Stuttgart Germany;

    3rd Institute of Physics IQST and Research Center SCoPE University of Stuttgart 70569 Stuttgart Germany;

    Universite Cote d'Azur Institut de Physique de Nice (INPHYNI) CNRS Parc Valrose 06108 Nice Cedex 2 France;

    Integrated Quantum Optics Universitaet Paderborn Warburger Strasse 100 33098 Paderborn Germany;

    Integrated Quantum Optics Universitaet Paderborn Warburger Strasse 100 33098 Paderborn Germany;

    Universite Cote d'Azur Institut de Physique de Nice (INPHYNI) CNRS Parc Valrose 06108 Nice Cedex 2 France;

    Universite Cote d'Azur Institut de Physique de Nice (INPHYNI) CNRS Parc Valrose 06108 Nice Cedex 2 France;

    Universite Cote d'Azur Institut de Physique de Nice (INPHYNI) CNRS Parc Valrose 06108 Nice Cedex 2 France 3rd Institute of Physics IQST and Research Center SCoPE University of Stuttgart 70569 Stuttgart Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:17:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号