首页> 外文期刊>Applied Physics Letters >Transforming pool boiling into self-sustained flow boiling through bubble squeezing mechanism in tapered microgaps
【24h】

Transforming pool boiling into self-sustained flow boiling through bubble squeezing mechanism in tapered microgaps

机译:通过锥形微间隙中的气泡挤压机制将池沸腾转化为自持流沸腾

获取原文
获取原文并翻译 | 示例
       

摘要

We demonstrate a mechanism to transform a pool boiling system into a self-sustained flow boiling system through bubble-induced two-phase flow in a tapered microgap over the heater surface. The nucleating bubbles in the gap are squeezed and expand preferentially in the increasing taper direction. The expanding flow cross section decelerates the two-phase flow and converts the momentum loss into pressure buildup. The bubble squeezing and the pressure recovery effects overcome the frictional and acceleration pressure drops to provide a net pumping head. We hypothesize that the resulting self-sustained flow eliminates the need for an external pump and transforms a pool boiling system into a pumpless flow boiling system with significantly higher heat transfer potential. Experiments were carried out with water in 10° and 15° tapered gaps over a 10 mm square heater surface with an inlet gap height of 1.27 mm. The plain heater surface with a 15° tapered gap reached a critical heat flux of 288W/cm~2 with a heat transfer coefficient of 119kW/m~2℃ as compared to 127W/cm~2 and 52.5 kW/ m~2℃ with only a plain surface. High-speed imaging revealed that the bubbles nucleating at the entrance in the gap are squeezed and expand in the increasing cross section direction. A homogeneous flow model was used for pressure drop analysis in the expanding gap. The results indicate that the pressure recovery mechanism alone cannot sustain the flow and the bubble squeezing action plays a critical role in establishing the self-sustained flow.
机译:我们演示了一种机制,它通过在加热器表面上方的锥形微间隙中通过气泡引起的两相流,将池沸腾系统转换为自持流沸腾系统。间隙中的成核气泡被挤压,并在​​逐渐增加的锥度方向上优先膨胀。扩大的流动横截面使两相流减速,并将动量损失转换为压力累积。气泡挤压和压力恢复效果克服了摩擦和加速压降,从而提供了净抽水头。我们假设所产生的自我维持的流量消除了对外部泵的需求,并将池沸腾系统转变为具有更高传热潜能的无泵流量沸腾系统。实验是在10mm正方形加热器表面上的10°和15°锥形间隙中的水上进行的,入口间隙高度为1.27 mm。带有15°锥形间隙的普通加热器表面的临界热通量为288W / cm〜2,传热系数为119kW / m〜2℃,而127W / cm〜2和52.5 kW / m〜2℃只有平整的表面。高速成像显示,在间隙入口处成核的气泡被挤压并在截面增大的方向上膨胀。均质流模型用于扩展间隙中的压降分析。结果表明,单独的压力恢复机制无法维持流动,而气泡挤压作用在建立自持流动中起着至关重要的作用。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第8期|081601.1-081601.5|共5页
  • 作者

  • 作者单位

    Mechanical Engineering Department Rochester Institute of Technology Rochester New York 14623 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:22:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号