首页> 外文期刊>Applied Physics Letters >Gate field effects on the topological insulator BiSbTeSe_2 interface
【24h】

Gate field effects on the topological insulator BiSbTeSe_2 interface

机译:栅场对拓扑绝缘子BiSbTeSe_2界面的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Interfaces between two topological insulators are of fundamental interest in condensed matter physics. Inspired by experimental efforts, we study interfacial processes between two slabs ofBiSbTeSe 2 (BSTS) via first principles calculations. Topological surface states are absent for the BSTS interface in its equilibrium separation, but our calculations show that they appear if the inter-slab distance is greater than6 angstrom. More importantly, we find that topological interface states can be preserved by inserting two or more layers of hexagonal boron nitride between the two BSTS slabs. In experiments, the electric current tunneling through the interface is insensitive to back gate voltage when the bias voltage is small. Using a first-principles based method that allows us to simulate the gate field, we show that at low bias, the extra charge induced by a gate voltage resides on the surface that is closest to the gate electrode, leaving the interface almost undoped. This provides clues to understand the origin of the observed insensitivity of transport properties to back voltage at low bias. Our study resolves a few questions raised in experiment, which does not yet offer a clear correlation between microscopic physics and transport data. We provide a road map for the design of vertical tunneling junctions involving the interface between two topological insulators.
机译:两个拓扑绝缘体之间的界面在凝聚态物理中具有根本的意义。受实验努力的启发,我们通过第一性原理计算研究了BiSbTeSe 2(BSTS)的两个平板之间的界面过程。 BSTS界面在其平衡分离中不存在拓扑表面状态,但是我们的计算表明,如果平板间距离大于6埃,则它们会出现。更重要的是,我们发现可以通过在两个BSTS平板之间插入两层或更多层六方氮化硼来保留拓扑界面状态。在实验中,当偏置电压较小时,通过接口隧穿的电流对后栅极电压不敏感。使用允许我们模拟栅极场的基于第一原理的方法,我们显示出在低偏置下,由栅极电压感应的额外电荷驻留在最靠近栅电极的表面上,几乎不掺杂界面。这提供了线索,以了解在低偏压下观察到的传输特性对背电压不敏感的根源。我们的研究解决了实验中提出的一些问题,这些问题尚未提供微观物理学与传输数据之间的明确关联。我们为涉及两个拓扑绝缘体之间的界面的垂直隧道结的设计提供了路线图。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第3期|031601.1-031601.5|共5页
  • 作者单位

    Univ Florida Dept Phys Gainesville FL 32611 USA|Univ Florida Quantum Theory Project Gainesville FL 32611 USA;

    Purdue Univ Dept Phys & Astron W Lafayette IN 47907 USA|Cornell Univ Appl & Engn Phys Ithaca NY 14853 USA;

    Univ Florida Dept Phys Gainesville FL 32611 USA|Univ Florida Quantum Theory Project Gainesville FL 32611 USA|Cent South Univ Sch Phys Sci & Elect Changsha 410012 Hunan Peoples R China;

    Purdue Univ Dept Phys & Astron W Lafayette IN 47907 USA|Purdue Univ Sch Elect & Comp Engn W Lafayette IN 47907 USA|Purdue Univ Birck Nanotechnol Ctr W Lafayette IN 47907 USA|Purdue Univ Purdue Quantum Sci & Engn Inst W Lafayette IN 47907 USA;

    Univ Florida Dept Phys Gainesville FL 32611 USA;

    Univ Florida Dept Phys Gainesville FL 32611 USA|Univ Florida Quantum Theory Project Gainesville FL 32611 USA|Univ Florida Ctr Mol Magnet Quantum Mat Gainesville FL 32611 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:58:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号