首页> 外文期刊>Applied Physics Letters >Electrical impedanee-based characterization of electrostatic suppression of the Leidenfrost state
【24h】

Electrical impedanee-based characterization of electrostatic suppression of the Leidenfrost state

机译:基于电阻抗的莱顿弗罗斯特状态静电抑制特性

获取原文
获取原文并翻译 | 示例
       

摘要

A drop of liquid will levitate on its own vapor on a sufficiently hot surface (the Leidenfrost effect). Application of an electric field across the vapor gap suppresses the Leidenfrost state by electrostatically attracting liquid towards the surface. This study highlights and quantifies the statistical nature of wetting during electrostatic suppression via electrical impedance characterization of Leidenfrost pools under electrostatic suppression. The influence of the electric field, surface superheat, and size of the Leidenfrost pool on the wetted area is studied. High-speed measurements (0.01 s resolution) indicate that the wetted area is not constant during electrostatic suppression, but instead fluctuates. This technique can also be used to study the onset of suppression. Interestingly, we identify two distinct threshold voltages required to initiate periodic and continuous electrostatic suppression, respectively. The dependence of these voltages on surface superheat and the frequency of the applied AC waveform is studied. Together, these results enable an in-depth understanding of electrostatic suppression and highlight the benefits of impedance-based characterization towards understanding the Leidenfrost effect. Published under license by AIP Publishing.
机译:一滴液体将在足够热的表面上悬浮在其自身的蒸气上(莱顿弗罗斯特效应)。在蒸汽间隙上施加电场通过将液体静电吸引到表面来抑制莱顿弗罗斯特状态。本研究通过静电抑制下的莱顿弗罗斯特池的电阻抗表征,突出并量化了静电抑制过程中润湿的统计性质。研究了电场,表面过热和莱顿弗罗斯特(Leidenfrost)池的大小对湿区的影响。高速测量(分辨率为0.01 s)表明,在静电抑制过程中,润湿区域不是恒定的,而是会波动的。该技术还可以用于研究抑制的发作。有趣的是,我们确定了分别启动周期性和连续静电抑制所需的两个不同的阈值电压。研究了这些电压对表面过热的依赖性以及所施加的交流波形的频率。总之,这些结果使人们对静电抑制有了更深入的了解,并突出了基于阻抗的表征对了解莱顿弗罗斯特效应的好处。由AIP Publishing授权发布。

著录项

  • 来源
    《Applied Physics Letters》 |2019年第15期|153701.1-153701.5|共5页
  • 作者

    Ozkan Onur; Bahadur Vaibhav;

  • 作者单位

    Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA;

    Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:12:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号