首页> 外文期刊>Applied Physics Letters >Dynamic response of exchange bias in graphene nanoribbons
【24h】

Dynamic response of exchange bias in graphene nanoribbons

机译:石墨烯纳米带中交换偏压的动态响应

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics of magnetic hysteresis, including the training effect and the field sweep rate dependence of the exchange bias, is experimentally investigated in exchange-coupled potassium split graphene nanoribbons (GNRs). We find that, at low field sweep rate, the pronounced absolute training effect is present over a large number of cycles. This is reflected in a gradual decrease of the exchange bias with the sequential field cycling. However, at high field sweep rate above 0.5 T/min, the training effect is not prominent. With the increase in field sweep rate, the average value of exchange bias field grows and is found to follow power-law behavior. The response of the exchange bias field to the field sweep rate variation is linked to the difference in the time it takes to perform a hysteresis loop measurement compared with the relaxation time of the anti-ferromagnetically aligned spins. The present results may broaden our current understanding of magnetism of GNRs and would be helpful in establishing the GNRs-based spintronic devices.
机译:在交换耦合的钾分裂石墨烯纳米带(GNR)中,对磁滞现象的动力学进行了研究,包括训练效应和场扫描速率对交换偏压的依赖性。我们发现,在低场扫描速率下,在大量循环中都存在明显的绝对训练效果。这反映在随着顺序场循环而逐渐减小交换偏压的情况下。但是,在高于0.5 T / min的高场扫描速率下,训练效果并不突出。随着场扫描速率的增加,交换偏置场的平均值增大,并且发现其遵循幂律行为。与反铁磁排列的自旋的弛豫时间相比,交换偏置场对场扫描速率变化的响应与执行磁滞回线测量所花费的时间差有关。目前的结果可能会拓宽我们目前对GNRs磁性的理解,并有助于建立基于GNRs的自旋电子器件。

著录项

  • 来源
    《Applied Physics Letters》 |2012年第14期|p.142402.1-142402.5|共5页
  • 作者单位

    INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium,Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, Andhra Pradesh 502205, India;

    INFAC-Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium,Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709, USA,Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;

    INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium;

    INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium;

    Department of Chemistry, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA;

    Department of Chemistry, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA,Department of Mechanical Engineering and Materials Science, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA,Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号